论文标题

将Rademacher定理扩展到设置值

Extending Rademacher Theorem to Set-Valued Maps

论文作者

Daniilidis, Aris, Quincampoix, Marc

论文摘要

Rademacher定理断言,Lipschitz在欧几里得空间之间的连续函数几乎在任何地方都可以区分。在这项工作中,我们将此结果扩展到了设置值的图,使用与凸流相关的设置可不同性的概念。我们的方法使用Rademacher定理,但也将其恢复为特殊情况。

Rademacher theorem asserts that Lipschitz continuous functions between Euclidean spaces are differentiable almost everywhere. In this work we extend this result to set-valued maps using an adequate notion of set-valued differentiability relating to convex processes. Our approach uses Rademacher theorem but also recovers it as a special case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源