论文标题

通过伪交易标签通过自学的域名进行域改编

Domain Adaptation for Dense Retrieval through Self-Supervision by Pseudo-Relevance Labeling

论文作者

Li, Minghan, Gaussier, Eric

论文摘要

尽管神经信息检索见证了巨大的改进,但最近的工作表明,在具有不同分布的目标域中,密集检索模型的概括能力有限,这与基于相互作用的模型获得的结果形成对比。为了解决这个问题,研究人员采取了对抗性学习和查询生成方法;然而,两种方法都导致了有限的进步。在本文中,我们建议采用一种自学方法,其中伪相关标签会自动在目标域上生成。为此,我们首先在目标域上使用标准的BM25模型来获得文档的首次排名,然后使用基于交互的模型T53B来重新列入顶部文档。我们进一步将这种方法与知识蒸馏相结合,以依靠基于互动的教师模型进行了培训的源领域。我们的实验表明,使用T53B和Minilm老师的伪相关标记平均比其他方法表现更好,并且在对伪关系标记的数据进行微调时,有助于改善最先进的查询生成方法GPL。

Although neural information retrieval has witnessed great improvements, recent works showed that the generalization ability of dense retrieval models on target domains with different distributions is limited, which contrasts with the results obtained with interaction-based models. To address this issue, researchers have resorted to adversarial learning and query generation approaches; both approaches nevertheless resulted in limited improvements. In this paper, we propose to use a self-supervision approach in which pseudo-relevance labels are automatically generated on the target domain. To do so, we first use the standard BM25 model on the target domain to obtain a first ranking of documents, and then use the interaction-based model T53B to re-rank top documents. We further combine this approach with knowledge distillation relying on an interaction-based teacher model trained on the source domain. Our experiments reveal that pseudo-relevance labeling using T53B and the MiniLM teacher performs on average better than other approaches and helps improve the state-of-the-art query generation approach GPL when it is fine-tuned on the pseudo-relevance labeled data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源