论文标题
抗铁磁基磁电化合物
Antiferromagnetic iron based magnetoelectric compounds
论文作者
论文摘要
从电场和磁场的线性耦合中受益的化合物的Landau自由能包括这两个磁场的产物,一个极性和时间 - 时间和一个轴向和一个轴向和时间odd。在我的化合物中,某些原子磁张量的预期值相对于抗传输是不变的。 Dirac Monopole(尚未观察到的麦克斯韦方程式中允许的电荷元素)和Zeldovich anapole(也称为Dirac偶极子)共享的不变性。从材料的科学角度来看,已经确定狄拉克多尔斯有助于X射线和中子的衍射。我们在铁尿酸盐(Fe2Teo6)和自旋梯(SRFE2S2O)的块状磁性特性中识别狄拉克单孔。两种引用的化合物都呈现出简单的轴向偶极子的抗铁磁构型,并且它们的不同磁性晶体类允许线性ME效应。但是,kerr效应是在旋转梯子中允许的对称性,并在铁尿酸盐中禁止。铁尿酸盐中禁止阿替孔,并允许在自旋阶梯化合物中,这在完全通过对称性告知的衍射模式中很明显。更普遍地,我们在未来的实验中使用具有中子束或X射线为铁原子共振的标准技术,在将来的实验中可见一阵狄拉克多尔物和轴向多物。 ME不变性对中子(X射线)衍射幅度施加了核(电荷)和磁性贡献之间的相位关系。因此,当X射线模式中的Bragg斑点的强度在逆转初级光束中的螺旋性时不会改变。同样的效果发生在极化中子的磁衍射中。
The Landau free-energy of a compound that benefits from a linear coupling of an electric field and a magnetic field includes a product of the two fields, one polar and time-even and one axial and time-odd. In ME compounds, expectation values of some atomic magnetic tensors are invariant with respect to anti-inversion. An invariance shared by the Dirac monopole (an element of charge allowed in Maxwell's equations that has not been observed) and a Zeldovich anapole, also known as a Dirac dipole. From the science of materials perspective, it has been established that Dirac multipoles contribute to the diffraction of x-rays and neutrons. We identify Dirac monopoles in bulk magnetic properties of iron tellurate (Fe2TeO6) and a spin ladder (SrFe2S2O). Both cited compounds present a simple antiferromagnetic configuration of axial dipoles, and their different magnetic crystal classes allow a linear ME effect. However, the Kerr effect is symmetry allowed in the spin ladder and forbidden in iron tellurate. Anapoles are forbidden in iron tellurate and allowed in the spin ladder compound, a difference evident in diffraction patterns fully informed by symmetry. More generally, we identify a raft of Dirac multipoles, and axial multipoles beyond dipoles, visible in future experiments using standard techniques with beams of neutrons or x-rays tuned in energy to an iron atomic resonance. ME invariance imposes a phase relationship between nuclear (charge) and magnetic contributions to neutron (x-ray) diffraction amplitudes. In consequence, intensities of Bragg spots in an x-ray pattern do not change when helicity in the primary beam is reversed. A like effect occurs in the magnetic diffraction of polarized neutrons.