论文标题
咒语:模型不可知性可靠性分析的框架
MAntRA: A framework for model agnostic reliability analysis
论文作者
论文摘要
我们提出了一个新型的模型不可知数据驱动的可靠性分析框架,以实现时间依赖性可靠性分析。所提出的方法(称为咒语)结合了可解释的机器学习,贝叶斯统计数据,并识别随机动态方程式,以评估尚不清楚的随随机激发的动力学系统的可靠性。采用了两阶段的方法:在第一阶段,开发了有效的变分贝叶斯方程发现算法,以确定从测量的输出数据中确定潜在的随机微分方程(SDE)的治理物理。开发的算法是有效的,并且由于有限和嘈杂的数据以及由于环境效应和外部激发而引起的认知不确定性以及差不多的不确定性。在第二阶段,使用随机集成方案解决了发现的SDE,并计算了概率故障。在三个数值示例中说明了所提出方法的功效。获得的结果表明,拟议方法可能应用在现场测量中对原位和遗产结构的可靠性分析。
We propose a novel model agnostic data-driven reliability analysis framework for time-dependent reliability analysis. The proposed approach -- referred to as MAntRA -- combines interpretable machine learning, Bayesian statistics, and identifying stochastic dynamic equation to evaluate reliability of stochastically-excited dynamical systems for which the governing physics is \textit{apriori} unknown. A two-stage approach is adopted: in the first stage, an efficient variational Bayesian equation discovery algorithm is developed to determine the governing physics of an underlying stochastic differential equation (SDE) from measured output data. The developed algorithm is efficient and accounts for epistemic uncertainty due to limited and noisy data, and aleatoric uncertainty because of environmental effect and external excitation. In the second stage, the discovered SDE is solved using a stochastic integration scheme and the probability failure is computed. The efficacy of the proposed approach is illustrated on three numerical examples. The results obtained indicate the possible application of the proposed approach for reliability analysis of in-situ and heritage structures from on-site measurements.