论文标题

使用ETAS.inlabru r-pake的地震性的时间演变的贝叶斯建模

Bayesian modelling of the temporal evolution of seismicity using the ETAS.inlabru R-package

论文作者

Naylor, Mark, Serafini, Francesco, Lindgren, Finn, Main, Ian

论文摘要

流行性类型的余震序列(ETA)模型被广泛用于建模地震序列和基础底部作业地震预测(OEF)。但是,由于多种原因,评估倒数ETAS参数的可靠性仍然很具有挑战性。最常见的算法只是返回点的估计值,而不确定性量化很少,而贝叶斯马尔可夫链蒙特卡洛实现的运行速度仍然很慢,尺寸不佳,很少有人扩展到包括空间结构。在这里,我们提出了一种使用替代贝叶斯方法的ETAS建模的新方法,即集成的嵌套拉普拉斯近似(INLA)。我们已经在一个名为Etas.inlabru的新的R包中实现了该模型,该模型构建在R wonkages r-inla和inlabru上。虽然我们只是在此处介绍时间分量,但模型缩放到时空模型,可能包括各种空间协变量。使用一系列合成案例研究,我们探讨了ETAS反转方法的鲁棒性。我们证明,模型参数的可靠估计要求目录数据包含相对静止的周期以及触发的序列。我们探讨了训练数据中随机不确定性下的鲁棒性,并表明该方法在广泛的起始条件下具有鲁棒性。我们展示了在建模域之前如何包含历史地震的影响,会影响反转的质量。最后,我们表明,大地震后依赖性依赖性不完全对ETAS后代具有显着且有害的影响。我们认为,inlabru倒置的速度包括对不确定性的严格估计,将更深入地探索如何鲁棒使用ETA进行地震性建模和操作地震预测。

The Epidemic Type Aftershock Sequence (ETAS) model is widely used to model seismic sequences and underpins Operational Earthquake Forecasting (OEF). However, it remains challenging to assess the reliability of inverted ETAS parameters for a range of reasons. The most common algorithms just return point estimates with little quantification of uncertainty, and Bayesian Markov Chain Monte Carlo implementations remain slow to run, do not scale well and few have been extended to include spatial structure. Here we present a new approach to ETAS modelling using an alternative Bayesian method, the Integrated Nested Laplace Approximation (INLA). We have implemented this model in a new R-Package called ETAS.inlabru, which builds on the R packages R-INLA and inlabru . Whilst we just present the temporal component here, the model scales to a spatio-temporal model and may include a variety of spatial covariates. Using a series of synthetic case studies, we explore the robustness of our ETAS inversion method. We demonstrate that reliable estimates of the model parameters require that the catalogue data contains periods of relative quiescence as well as triggered sequences. We explore the robustness under stochastic uncertainty in the training data and show that the method is robust to a wide range of starting conditions. We show how the inclusion of historic earthquakes prior to the modelled domain affects the quality of the inversion. Finally, we show that rate dependent incompleteness after large earthquakes has a significant and detrimental effect on the ETAS posteriors. We believe that the speed of the inlabru inversion, which include a rigorous estimation of uncertainty, will enable a deeper exploration of how to use ETAS robustly for seismicity modelling and operational earthquake forecasting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源