论文标题
Kantorovich指数采样系列的某些近似结果
Certain Approximation Results for Kantorovich Exponential Sampling Series
论文作者
论文摘要
在本文中,我们研究了Kantorovich指数采样算子家族的强近近似定理和饱和顺序。对数均匀连续和有界函数的类别,以及log-hölderian函数类的类别被认为可以得出这些结果。我们还证明了一些辅助结果,包括Voronovskaya型定理,以及Kantorovich指数采样序列与广义指数采样系列之间的关系,以实现所需的计划。此外,讨论了在我们定理的假设中假定的满足条件内核的一些例子。
In this paper, we study a strong inverse approximation theorem and saturation order for the family of Kantorovich exponential sampling operators. The class of log-uniformly continuous and bounded functions, and class of log-Hölderian functions are considered to derive these results. We also prove some auxiliary results including Voronovskaya type theorem, and a relation between the Kantorovich exponential sampling series and the generalized exponential sampling series, to achieve the desired plan. Moreover, some examples of kernels satisfying the conditions, which are assumed in the hypotheses of our theorems, are discussed.