论文标题
阿维拉(Avila
Avila's acceleration via zeros of determinants, and applications to Schrödinger cocycles
论文作者
论文摘要
在本文中,我们通过有限体积中的dirichlet决定因素的零数数量来表征Avila对Lyapunov指数的量化加速度的表征。作为应用程序,我们证明了$β$-Hölder的连续性,用于超临界的准周期schrödinger操作员,仅限于$ \ ell $ -th stratum,用于任何$β<(2(\ ell-1)^{ - 1} $和$ \ el \ ge2 $。我们为操作员的所有利ph频频率建立了Anderson定位,该频率在第一个超临界地层上具有甚至分析势函数,如果它是非空的,则具有积极的措施。
In this paper we give a characterization of Avila's quantized acceleration of the Lyapunov exponent via the number of zeros of the Dirichlet determinants in finite volume. As applications, we prove $β$-Hölder continuity of the integrated density of states for supercritical quasi-periodic Schrödinger operators restricted to the $\ell$-th stratum, for any $β<(2(\ell-1))^{-1}$ and $\ell\ge2$. We establish Anderson localization for all Diophantine frequencies for the operator with even analytic potential function on the first supercritical stratum, which has positive measure if it is nonempty.