论文标题

阿维拉(Avila

Avila's acceleration via zeros of determinants, and applications to Schrödinger cocycles

论文作者

Han, Rui, Schlag, Wilhelm

论文摘要

在本文中,我们通过有限体积中的dirichlet决定因素的零数数量来表征Avila对Lyapunov指数的量化加速度的表征。作为应用程序,我们证明了$β$-Hölder的连续性,用于超临界的准周期schrödinger操作员,仅限于$ \ ell $ -th stratum,用于任何$β<(2(\ ell-1)^{ - 1} $和$ \ el \ ge2 $。我们为操作员的所有利ph频频率建立了Anderson定位,该频率在第一个超临界地层上具有甚至分析势函数,如果它是非空的,则具有积极的措施。

In this paper we give a characterization of Avila's quantized acceleration of the Lyapunov exponent via the number of zeros of the Dirichlet determinants in finite volume. As applications, we prove $β$-Hölder continuity of the integrated density of states for supercritical quasi-periodic Schrödinger operators restricted to the $\ell$-th stratum, for any $β<(2(\ell-1))^{-1}$ and $\ell\ge2$. We establish Anderson localization for all Diophantine frequencies for the operator with even analytic potential function on the first supercritical stratum, which has positive measure if it is nonempty.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源