论文标题

使用光谱卷积自动编码器在半规则表面网格上进行转移学习

Transfer Learning using Spectral Convolutional Autoencoders on Semi-Regular Surface Meshes

论文作者

Hahner, Sara, Kerkhoff, Felix, Garcke, Jochen

论文摘要

随着时间的流逝,3D表面网格变形的基本动力学和模式可以通过无监督的学习,尤其是自动编码器来发现,它们计算表面的低维嵌入。为了通过转移学习来研究看不见的形状的变形模式,我们希望训练可以在不训练新网络的情况下分析新的表面网眼的自动编码器。在这里,大多数最先进的自动编码器无法处理不同连接性的网格,因此不限于对新网眼的概括能力。同样,与训练形状的错误相比,重建错误大大增加。为了解决这个问题,我们提出了一个新型的光谱Cosma(卷积半规则网状自动编码器)网络。这种基于补丁的方法与表面感知训练结合使用。它重建训练过程中未呈现的表面,并概括了表面斑块的变形行为。与已在这些形状上训练的最先进的自动编码器相比,这种新颖的方法可从不同数据集中重建不同数据集的看不见的网格。我们在看不见的形状上的转移学习错误比直接在数据上学习的模型低40%。此外,基线自动编码器仅针对整个形状检测未见网格序列的变形模式。相比之下,由于采用的区域斑块和稳定的重建质量,我们可以将这些变形模式的表面定位。

The underlying dynamics and patterns of 3D surface meshes deforming over time can be discovered by unsupervised learning, especially autoencoders, which calculate low-dimensional embeddings of the surfaces. To study the deformation patterns of unseen shapes by transfer learning, we want to train an autoencoder that can analyze new surface meshes without training a new network. Here, most state-of-the-art autoencoders cannot handle meshes of different connectivity and therefore have limited to no generalization capacities to new meshes. Also, reconstruction errors strongly increase in comparison to the errors for the training shapes. To address this, we propose a novel spectral CoSMA (Convolutional Semi-Regular Mesh Autoencoder) network. This patch-based approach is combined with a surface-aware training. It reconstructs surfaces not presented during training and generalizes the deformation behavior of the surfaces' patches. The novel approach reconstructs unseen meshes from different datasets in superior quality compared to state-of-the-art autoencoders that have been trained on these shapes. Our transfer learning errors on unseen shapes are 40% lower than those from models learned directly on the data. Furthermore, baseline autoencoders detect deformation patterns of unseen mesh sequences only for the whole shape. In contrast, due to the employed regional patches and stable reconstruction quality, we can localize where on the surfaces these deformation patterns manifest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源