论文标题

部分可观测时空混沌系统的无模型预测

Continuous pulse advances in the negative ion source NIO1

论文作者

Barbisan, M., Agnello, R., Cavenago, M., Delogu, R. S., Pimazzoni, A., Balconi, L., Barbato, P., Baseggio, L., Castagni, A., Duteil, B. Pouradier, Franchin, L., Laterza, B., Molon, F., Maniero, M., Migliorato, L., Milazzo, R., Passalacqua, G., Poggi, C., Ravarotto, D., Rizzieri, R., Romanato, L., Rossetto, F., Trevisan, L, Ugoletti, M., Zaniol, B., Zucchetti, S.

论文摘要

Consorzio RFX和INFN-LNL已设计,建造和操作紧凑型射频负离子源NiO1(负离子优化阶段1),目的是研究H离子的产生和加速度。特别是,NiO1旨在使血浆产生和束提取连续活跃几个小时。自2020年以来,CS层增强了等离子体网格(加速度系统的第一个网格)处的负离子(加速系统的第一个网格),并在源体积中沉积了CS蒸发。对于应用于融合中性束喷射器的负离子源,必须将束电流和共摘取电子的比例保持至少1小时,与血浆操作的CS溅射和重新分布的后果。本文在连续(6÷7 h)等离子体脉冲期间的cAesiation过程和光束性能方面介绍了NiO1源的最新结果。由于NiO1源的尺寸较小(20 x(直径)10 cm),体积中的CS密度很高(10^15÷10^16 m^-3),并由等离子壁相互作用支配。共摘取电子的最大束电流密度和最小比例分别约为30 a/m^2和2。与其他负离子源中所做的类似,NIO1中的血浆网格温度首次升高到80°C,尽管这导致了束电流的最小改善,并提高了共置电子时的束值。

Consorzio RFX and INFN-LNL have designed, built and operated the compact radiofrequency negative ion source NIO1 (Negative Ion Optimization phase 1) with the aim of studying the production and acceleration of H- ions. In particular, NIO1 was designed to keep plasma generation and beam extraction continuously active for several hours. Since 2020 the production of negative ions at the plasma grid (the first grid of the acceleration system) has been enhanced by a Cs layer, deposited though active Cs evaporation in the source volume. For the negative ion sources applied to fusion neutral beam injectors, it is essential to keep the beam current and the fraction of co-extracted electrons stable for at least 1 h, against the consequences of Cs sputtering and redistribution operated by the plasma. The paper presents the latest results of the NIO1 source, in terms of caesiation process and beam performances during continuous (6÷7 h) plasma pulses. Due to the small dimensions of the NIO1 source (20 x (diam.)10 cm), the Cs density in the volume is high (10^15 ÷10^16 m^-3) and dominated by plasma-wall interaction. The maximum beam current density and minimum fraction of co-extracted electrons were respectively about 30 A/m^2 and 2. Similarly to what done in other negative ion sources, the plasma grid temperature in NIO1 was raised for the first time, up to 80 °C, although this led to a minimal improvement of the beam current and to an increase of the co-extracted electron current.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源