论文标题
在区块链上,我们合作:进化游戏的观点
On Blockchain We Cooperate: An Evolutionary Game Perspective
论文作者
论文摘要
合作是人类繁荣的基础。区块链作为信任机,是网络空间中的合作机构,通过通过共识协议分布式信任来支持合作。尽管计算机科学的研究集中于共识算法的容错问题,但经济研究利用激励设计来分析代理行为。为了实现区块链的合作,新兴的跨学科研究介绍了合理性和游戏理论解决方案概念,以研究各种共识协议的平衡结果。但是,现有的研究并不认为代理商可以从历史观察中学习的可能性。因此,我们将一般共识协议作为动态游戏环境抽象,将有界理性的解决方案概念应用于模型代理行为,并解决三种不同稳定平衡的初始条件。在我们的游戏中,代理商在朝着平衡的进化过程中模仿地学习了全球历史,为此,我们从计算和经济角度从安全性,可笑性,有效性和社会福利来评估结果。我们的研究为跨学科的文献做出了贡献,包括计算机科学方面的分布共识,区块链共识的经济学理论,生物学与经济学交集的进化游戏理论,在心理学与经济学之间的相互作用以及合作AI与计算和社会科学的共同洞察力之间的相互作用界定合理性。最后,我们讨论了未来的协议设计可以通过提高奖励污染比并降低成本孔比和关键率来更好地实现我们诚实稳定均衡的最期望结果。
Cooperation is fundamental for human prosperity. Blockchain, as a trust machine, is a cooperative institution in cyberspace that supports cooperation through distributed trust with consensus protocols. While studies in computer science focus on fault tolerance problems with consensus algorithms, economic research utilizes incentive designs to analyze agent behaviors. To achieve cooperation on blockchains, emerging interdisciplinary research introduces rationality and game-theoretical solution concepts to study the equilibrium outcomes of various consensus protocols. However, existing studies do not consider the possibility for agents to learn from historical observations. Therefore, we abstract a general consensus protocol as a dynamic game environment, apply a solution concept of bounded rationality to model agent behavior, and resolve the initial conditions for three different stable equilibria. In our game, agents imitatively learn the global history in an evolutionary process toward equilibria, for which we evaluate the outcomes from both computing and economic perspectives in terms of safety, liveness, validity, and social welfare. Our research contributes to the literature across disciplines, including distributed consensus in computer science, game theory in economics on blockchain consensus, evolutionary game theory at the intersection of biology and economics, bounded rationality at the interplay between psychology and economics, and cooperative AI with joint insights into computing and social science. Finally, we discuss that future protocol design can better achieve the most desired outcomes of our honest stable equilibria by increasing the reward-punishment ratio and lowering both the cost-punishment ratio and the pivotality rate.