论文标题

全部至专给4D蒸馏,用于自我监督点云序列表示学习

Complete-to-Partial 4D Distillation for Self-Supervised Point Cloud Sequence Representation Learning

论文作者

Zhang, Zhuoyang, Dong, Yuhao, Liu, Yunze, Yi, Li

论文摘要

4D点云序列的最新工作吸引了很多关注。但是,获得详尽的标记为4D数据集通常非常昂贵且费力,因此研究如何利用原始未标记数据尤为重要。但是,大多数现有的自我监督点云表示方法仅考虑从静态快照中考虑几何形状,从而忽略了这样一个事实,即动态场景的顺序观察可以揭示更全面的几何细节。视频表示学习框架主要是模型运动作为图像空间流动,更不用说是3D几何的。为了克服此类问题,本文提出了一种新的4D自制的预训练方法,称为“完全到Partial 4D蒸馏”。我们的关键思想是将4D自制的表示学习作为教师知识蒸馏框架,并让学生在教师的指导下学习有用的4D表示。实验表明,这种方法在广泛的4D点云序列序列理解包括室内和室外场景在内的4D点云序列上的先前预训练方法大大优于先前的预训练方法。

Recent work on 4D point cloud sequences has attracted a lot of attention. However, obtaining exhaustively labeled 4D datasets is often very expensive and laborious, so it is especially important to investigate how to utilize raw unlabeled data. However, most existing self-supervised point cloud representation learning methods only consider geometry from a static snapshot omitting the fact that sequential observations of dynamic scenes could reveal more comprehensive geometric details. And the video representation learning frameworks mostly model motion as image space flows, let alone being 3D-geometric-aware. To overcome such issues, this paper proposes a new 4D self-supervised pre-training method called Complete-to-Partial 4D Distillation. Our key idea is to formulate 4D self-supervised representation learning as a teacher-student knowledge distillation framework and let the student learn useful 4D representations with the guidance of the teacher. Experiments show that this approach significantly outperforms previous pre-training approaches on a wide range of 4D point cloud sequence understanding tasks including indoor and outdoor scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源