论文标题
阶段,模态,时间和空间位置:用于加速图分析的特定域特异性ML预摘要
Phases, Modalities, Temporal and Spatial Locality: Domain Specific ML Prefetcher for Accelerating Graph Analytics
论文作者
论文摘要
记忆性能是图形分析加速的瓶颈。现有的机器学习(ML)预摘要与相位过渡和图形处理中的不规则内存访问斗争。我们提出了MPGraph,这是一种基于ML的预摘要,用于使用域特定模型的图形分析。 MPGraph引入了三个新的优化:相变的软检测,用于访问三角洲和页面预测的相位特异性多模式模型,以及用于预取控制的链时时空预取(CSTP)。与Kolmogorov-Smirnov的窗口和决策树相比,我们的过渡探测器的精度高34.17-82.15%。与LSTM和Vanilla注意模型相比,我们的预测因素的F1得分达到6.80-16.02%的F1得分,PAGE预测的精度为11.68-15.41%。使用CSTP,MPGraph实现了12.52-21.23%的IPC改进,超过最先进的非ML预餐BO,降低了7.58-12.03%,基于ML的Prefetchers Voyager和Transfetch and Transfetch and Transfetch and Transfetch af 3.27-4.58%。对于实际实施,我们使用延迟降低的压缩模型证明了MPGraph,与BO相比,延迟的准确性和覆盖率明显高,IPC提高了3.58%。
Memory performance is a bottleneck in graph analytics acceleration. Existing Machine Learning (ML) prefetchers struggle with phase transitions and irregular memory accesses in graph processing. We propose MPGraph, an ML-based Prefetcher for Graph analytics using domain specific models. MPGraph introduces three novel optimizations: soft detection for phase transitions, phase-specific multi-modality models for access delta and page predictions, and chain spatio-temporal prefetching (CSTP) for prefetch control. Our transition detector achieves 34.17-82.15% higher precision compared with Kolmogorov-Smirnov Windowing and decision tree. Our predictors achieve 6.80-16.02% higher F1-score for delta and 11.68-15.41% higher accuracy-at-10 for page prediction compared with LSTM and vanilla attention models. Using CSTP, MPGraph achieves 12.52-21.23% IPC improvement, outperforming state-of-the-art non-ML prefetcher BO by 7.58-12.03% and ML-based prefetchers Voyager and TransFetch by 3.27-4.58%. For practical implementation, we demonstrate MPGraph using compressed models with reduced latency shows significantly superior accuracy and coverage compared with BO, leading to 3.58% higher IPC improvement.