论文标题

使用机器学习将黑洞积聚流与空间分辨的极化观测值联系起来

Using Machine Learning to Link Black Hole Accretion Flows with Spatially Resolved Polarimetric Observables

论文作者

Qiu, Richard, Ricarte, Angelo, Narayan, Ramesh, Wong, George N., Chael, Andrew, Palumbo, Daniel

论文摘要

我们介绍了一个新的库,其中包括535,194个超级质量黑洞和事件地平线望远镜(EHT)的模型图像,该库是SGR A*和M87*的,该图像通过对一般的相对学辐射转移计算计算,以对一般的相对性辐射转移计算计算。然后,为了推断潜在的黑洞和积聚流参数(自旋,倾斜度,离子与电子温度比和磁场极性),我们在从每个图像中计算出的各种手工挑选的极化可观测值上训练一个随机的森林机器学习模型。我们的随机森林能够对自旋,倾斜度和离子与电子温度比的有意义的预测,但在推断磁场极性方面有更多困难。为了删除物理参数如何在不同的可观察物中进行编码,我们应用两个不同的指标来对每个可观察到的在推断每个物理参数方面的重要性。空间分辨的线性极化形态的细节与模型之间的重要歧视剂一样突出。考虑到我们的图像库的理论局限性和不完整性,对于真实的M87*数据,我们的机械有利于具有较大离子与电子温度比的高速逆行模型。由于这些目标的时间变化性质,随着EHT和下一代(EHT)继续开发和监视其目标,重复的极化成像将进一步改善模型推断。

We introduce a new library of 535,194 model images of the supermassive black holes and Event Horizon Telescope (EHT) targets Sgr A* and M87*, computed by performing general relativistic radiative transfer calculations on general relativistic magnetohydrodynamics simulations. Then, to infer underlying black hole and accretion flow parameters (spin, inclination, ion-to-electron temperature ratio, and magnetic field polarity), we train a random forest machine learning model on various hand-picked polarimetric observables computed from each image. Our random forest is capable of making meaningful predictions of spin, inclination, and the ion-to-electron temperature ratio, but has more difficulty inferring magnetic field polarity. To disentangle how physical parameters are encoded in different observables, we apply two different metrics to rank the importance of each observable at inferring each physical parameter. Details of the spatially resolved linear polarization morphology stand out as important discriminators between models. Bearing in mind the theoretical limitations and incompleteness of our image library, for the real M87* data, our machinery favours high-spin retrograde models with large ion-to-electron temperature ratios. Due to the time-variable nature of these targets, repeated polarimetric imaging will further improve model inference as the EHT and next-generation (EHT) continue to develop and monitor their targets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源