论文标题
模块的转限扩展的分类性
Categoricity for transfinite extensions of modules
论文作者
论文摘要
对于每个可解结的模块类别$ \ Mathcal d $,我们证明大型红衣主教中的$ \ Mathcal d $的分类性等于其在红衣主教的尾巴中的分类。我们还证明了Shelah对$(\ Mathcal d,\ prec)$的分类猜想,其中$(\ Mathcal d,\ prec)$是Ext的任何抽象基本类。
For each deconstructible class of modules $\mathcal D$, we prove that the categoricity of $\mathcal D$ in a big cardinal is equivalent to its categoricity in a tail of cardinals. We also prove Shelah's Categoricity Conjecture for $(\mathcal D, \prec)$, where $(\mathcal D, \prec)$ is any abstract elementary class of roots of Ext.