论文标题

FSID:通过程序场景产生完全合成的图像Denoing

FSID: Fully Synthetic Image Denoising via Procedural Scene Generation

论文作者

Choe, Gyeongmin, Du, Beibei, Nam, Seonghyeon, Xiang, Xiaoyu, Zhu, Bo, Ranjan, Rakesh

论文摘要

对于低级计算机视觉和图像处理ML任务,大型​​数据集上的培训对于概括至关重要。但是,主要依靠现实世界图像的标准做法主要来自Internet,这是图像质量,可扩展性和隐私问题,尤其是在商业环境中。为了解决这个问题,我们开发了一个程序合成数据生成管道和针对低级视觉任务的数据集。我们基于非现实的发动机的合成数据管道与随机3D对象,材料和几何变换的组合将大型算法填充。然后,我们校准相机噪声曲线以合成嘈杂的图像。从该管道中,我们生成了一个完全合成的图像Denoising数据集(FSID),该数据集由175,000个嘈杂/干净的图像对组成。然后,我们训练并验证了基于CNN的Denoising模型,并证明,在使用智能手机摄像头捕获的真实世界嘈杂图像进行评估时,仅根据此合成数据训练的模型就可以实现具有竞争力的DeNo效果。

For low-level computer vision and image processing ML tasks, training on large datasets is critical for generalization. However, the standard practice of relying on real-world images primarily from the Internet comes with image quality, scalability, and privacy issues, especially in commercial contexts. To address this, we have developed a procedural synthetic data generation pipeline and dataset tailored to low-level vision tasks. Our Unreal engine-based synthetic data pipeline populates large scenes algorithmically with a combination of random 3D objects, materials, and geometric transformations. Then, we calibrate the camera noise profiles to synthesize the noisy images. From this pipeline, we generated a fully synthetic image denoising dataset (FSID) which consists of 175,000 noisy/clean image pairs. We then trained and validated a CNN-based denoising model, and demonstrated that the model trained on this synthetic data alone can achieve competitive denoising results when evaluated on real-world noisy images captured with smartphone cameras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源