论文标题

不均匀U统计量的自民党

LDP for Inhomogeneous U-Statistics

论文作者

Bhattacharya, Sohom, Deb, Nabarun, Mukherjee, Sumit

论文摘要

在本文中,我们得出了一个较大的偏差原理(LDP),以实现通用顺序不均匀的U/V统计量。使用此情况,我们为两种类型的统计数据得出了一份LDP:随机多线性形式和子图的单色副本数量。我们表明,在这些情况下,相应的速率函数可以表示为在合适的功能空间上的变异问题。我们使用开发的工具来研究与相应的哈密顿人的吉布斯度量,其中包括对Ising(具有非紧密基础措施)和Potts模型的张量概括。对于这些Gibbs的措施,我们建立了对数正常化常数的缩放限制,并且根据弱*拓扑而弱的法律,这可能是独立的利益。

In this paper we derive a Large Deviation Principle (LDP) for inhomogeneous U/V-statistics of a general order. Using this, we derive a LDP for two types of statistics: random multilinear forms, and number of monochromatic copies of a subgraph. We show that the corresponding rate functions in these cases can be expressed as a variational problem over a suitable space of functions. We use the tools developed to study Gibbs measures with the corresponding Hamiltonians, which include tensor generalizations of both Ising (with non-compact base measure) and Potts models. For these Gibbs measures, we establish scaling limits of log normalizing constants, and weak laws in terms of weak* topology, which are of possible independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源