论文标题

与科学文本进行预培训可以改善教育问题的产生

Pre-Training With Scientific Text Improves Educational Question Generation

论文作者

Muse, Hamze, Bulathwela, Sahan, Yilmaz, Emine

论文摘要

随着数字教育材料和可扩展的电子学习系统的繁荣,实现AI辅助的个性化学习的潜力飙升。在这种景观中,自动产生的教育问题将发挥关键作用,当全球人口正在操纵其个性化的学习旅程时,可以实现可扩展的自我评估。我们开发了Eduqg,这是一种通过适应大型语言模型来构建的新型教育问题生成模型。我们的最初实验表明,EduqG可以通过对科学文本进行预培训来提出较高的教育问题。

With the boom of digital educational materials and scalable e-learning systems, the potential for realising AI-assisted personalised learning has skyrocketed. In this landscape, the automatic generation of educational questions will play a key role, enabling scalable self-assessment when a global population is manoeuvring their personalised learning journeys. We develop EduQG, a novel educational question generation model built by adapting a large language model. Our initial experiments demonstrate that EduQG can produce superior educational questions by pre-training on scientific text.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源