论文标题
实施和学习量子隐藏的马尔可夫模型
Implementation and Learning of Quantum Hidden Markov Models
论文作者
论文摘要
在本文中,我们使用量子通道和开放量子系统的理论来提供一类称为量子隐藏的马尔可夫模型(QHMM)的随机发电机的有效统一表征。通过利用统一的特征,我们证明了任何QHMM可以作为具有中路测量的量子电路实现。我们证明,与等效的经典隐藏马尔可夫模型(HMMS)相比,QHMM对随机过程语言的更紧凑,更具有表现力的定义。从QHMM作为量子通道的配方开始,我们采用Stinespring的构造来表示这些模型作为中路测量的单位量子电路。通过利用QHMM的统一参数化,我们定义了正式的QHMM学习模型。该模型将目标随机过程语言的经验分布形式化,定义了量子电路的假设空间,并引入了经验的随机分歧度量 - 假设适应性 - 作为学习的成功标准。我们证明,由于Stinespring扩张的连续性,学习模型具有平稳的搜索景观。假设和健身空间之间的平滑映射可以开发有效的启发式和梯度下降学习算法。 我们为QHMM提出了两种实用的学习算法。第一种算法是一种高参数自适应进化搜索。第二算法使用多参数非线性优化技术将QHMM学习为量子ANSATZ电路。
In this article, we use the theory of quantum channels and open quantum systems to provide an efficient unitary characterization of a class of stochastic generators known as quantum hidden Markov models (QHMMs). By utilizing the unitary characterization, we demonstrate that any QHMM can be implemented as a quantum circuit with mid-circuit measurement. We prove that QHMMs are more compact and more expressive definitions of stochastic process languages compared to the equivalent classical hidden Markov models (HMMs). Starting with the formulation of QHMMs as quantum channels, we employ Stinespring's construction to represent these models as unitary quantum circuits with mid-circuit measurement. By utilizing the unitary parameterization of QHMMs, we define a formal QHMM learning model. The model formalizes the empirical distributions of target stochastic process languages, defines hypothesis space of quantum circuits, and introduces an empirical stochastic divergence measure - hypothesis fitness - as a success criterion for learning. We demonstrate that the learning model has a smooth search landscape due to the continuity of Stinespring's dilation. The smooth mapping between the hypothesis and fitness spaces enables the development of efficient heuristic and gradient descent learning algorithms. We propose two practical learning algorithms for QHMMs. The first algorithm is a hyperparameter-adaptive evolutionary search. The second algorithm learns the QHMM as a quantum ansatz circuit using a multi-parameter non-linear optimization technique.