论文标题
统一的加德纳猜想和圆形的鲍尔流动
The uniform Gardner conjecture and rounding Borel flows
论文作者
论文摘要
我们研究了满足Gardner对均匀分布的集合的等分组成猜想的组。我们证明,当且仅当它不接受$(\ Mathbb {z}/2 \ Mathbb {Z})时,我们才证明一个属性具有此属性。我们的技术贡献是用于将borel流动的算法用于适合群体的行为。
We study groups which satisfy Gardner's equidecomposition conjecture for uniformly distributed sets. We prove that an amenable group has this property if and only if it does not admit $(\mathbb{Z}/2\mathbb{Z}) *(\mathbb{Z}/2\mathbb{Z})$ as a quotient by a finite subgroup. Our technical contribution is an algorithm for rounding Borel flows for actions of amenable groups.