论文标题

通过Skorohod估算和$ p $-Poincaré不平等的定量CLT在泊松空间上

Quantitative CLTs on the Poisson space via Skorohod estimates and $p$-Poincaré inequalities

论文作者

Trauthwein, Tara

论文摘要

我们基于Skorohod积分矩的新估计值对泊松功能的高斯近似建立了新的明确界限。将它们与Malliavin-Stein方法相结合,我们在Wasserstein和Kolmogorov距离中得出了边界,它们的应用需要对附加成本运算符$ \ Unicode $ \ Unicode {x2014} $的最小矩假设,从而扩大了结果(上次,Peccati和Schulte,2016年)。我们的应用程序包括用于在线最近的邻居图的CLT,其有效性是在(Wade,2009; Penrose and Wade,2009年)中的。我们还将技术应用于吉尔伯特图的边缘功能,$ k $ near的邻居图和径向生成树的质量clts,如果在定性clt是已知且未知的情况下。

We establish new explicit bounds on the Gaussian approximation of Poisson functionals based on novel estimates of moments of Skorohod integrals. Combining these with the Malliavin-Stein method, we derive bounds in the Wasserstein and Kolmogorov distances whose application requires minimal moment assumptions on add-one cost operators $\unicode{x2014}$ thereby extending the results from (Last, Peccati and Schulte, 2016). Our applications include a CLT for the Online Nearest Neighbour graph, whose validity was conjectured in (Wade, 2009; Penrose and Wade, 2009). We also apply our techniques to derive quantitative CLTs for edge functionals of the Gilbert graph, of the $k$-Nearest Neighbour graph and of the Radial Spanning Tree, both in cases where qualitative CLTs are known and unknown.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源