论文标题

使用高斯流程回归对压缩机站进行的在线反馈优化压缩机站

Online Feedback Optimization of Compressor Stations with Model Adaptation using Gaussian Process Regression

论文作者

Zagorowska, M., Degner, M., Ortmann, L., Ahmed, A., Bolognani, S., Chanona, E. A. del Rio, Mercangoz, M.

论文摘要

在线反馈优化是一种用于将过程工厂操作到其最佳工作点的方法,而无需明确解决非线性约束优化问题。这是通过利用线性植物模型和测量反馈来实现的。但是,使用这种方法时,植物模型错配的存在会导致次优的结果。学习植物模型不匹配可以使在线反馈优化能够克服这一缺点。在这项工作中,我们介绍了使用高斯流程回归的在线模型适应在线反馈优化的新颖应用。我们通过参数和结构性植物模型不匹配的压缩机站中使用现实的负载共享问题来证明我们的方法。我们假设对压缩机图的知识不完美,并设计了在线反馈优化控制器,以最大程度地减少压缩机站功耗。在评估的情况下,与案例相比,对植物的不完美知识会导致功耗增加5%。我们证明,通过模型适应的在线反馈优化将这一增加到仅为0.8%,几乎近似于植物的完美知识,而不管错不匹配的类型如何。

Online Feedback Optimization is a method used to steer the operation of a process plant to its optimal operating point without explicitly solving a nonlinear constrained optimization problem. This is achieved by leveraging a linear plant model and feedback from measurements. However the presence of plant-model mismatch leads to suboptimal results when using this approach. Learning the plant-model mismatch enables Online Feedback Optimization to overcome this shortcoming. In this work we present a novel application of Online Feedback Optimization with online model adaptation using Gaussian Process regression. We demonstrate our approach with a realistic load sharing problem in a compressor station with parametric and structural plant-model mismatch. We assume imperfect knowledge of the compressor maps and design an Online Feedback Optimization controller that minimizes the compressor station power consumption. In the evaluated scenario, imperfect knowledge of the plant leads to a 5\% increase in power consumption compared to the case with perfect knowledge. We demonstrate that Online Feedback Optimization with model adaptation reduces this increase to only 0.8%, closely approximating the case of perfect knowledge of the plant, regardless of the type of mismatch.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源