论文标题

域的概括策略以训练分类器鲁棒到时空转移

Domain Generalization Strategy to Train Classifiers Robust to Spatial-Temporal Shift

论文作者

Seo, Minseok, Kim, Doyi, Shin, Seungheon, Kim, Eunbin, Ahn, Sewoong, Choi, Yeji

论文摘要

近年来,基于深度学习的天气预测模型已显着发展。但是,基于深度学习的数据驱动模型很难应用于现实世界应用程序,因为它们容易受到时空转移的影响。当模型过于适应当地和季节性时,天气预测任务特别容易容易发生空间变化。在本文中,我们提出了一种培训策略,以使天气预测模型鲁棒性稳定于时空变化。我们首先分析了超参数的影响以及现有训练策略对模型的时空转移鲁棒性的增强。接下来,我们提出了基于分析结果和测试时间增加的超参数和增强剂的最佳组合。我们在W4C22传输数据集上执行了所有实验,并实现了第一项性能。

Deep learning-based weather prediction models have advanced significantly in recent years. However, data-driven models based on deep learning are difficult to apply to real-world applications because they are vulnerable to spatial-temporal shifts. A weather prediction task is especially susceptible to spatial-temporal shifts when the model is overfitted to locality and seasonality. In this paper, we propose a training strategy to make the weather prediction model robust to spatial-temporal shifts. We first analyze the effect of hyperparameters and augmentations of the existing training strategy on the spatial-temporal shift robustness of the model. Next, we propose an optimal combination of hyperparameters and augmentation based on the analysis results and a test-time augmentation. We performed all experiments on the W4C22 Transfer dataset and achieved the 1st performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源