论文标题

迈向与人兼容的自动驾驶汽车:通过情感过渡建模的自动驾驶中非语言图灵测试的研究

Towards human-compatible autonomous car: A study of non-verbal Turing test in automated driving with affective transition modelling

论文作者

Li, Zhaoning, Jiang, Qiaoli, Wu, Zhengming, Liu, Anqi, Wu, Haiyan, Huang, Miner, Huang, Kai, Ku, Yixuan

论文摘要

当人类走得更远时,自动驾驶是必不可少的。尽管现有文献强调,如果自动驾驶以人类的方式行驶,对自动驾驶汽车的接受将增加,但稀疏的研究从乘客的座位角度提供了自然主义的体验,以检查当前自动驾驶汽车的人性。本研究测试了AI驾驶员是否可以根据69名参与者的反馈在现实情况下为乘客创造类似人类的乘车体验。我们为自动驾驶设计了基于乘车体验的非语言图灵测试的版本。参与者骑着自动驾驶汽车(由人类或人工智能驾驶员驾驶)作为乘客,并认为驾驶员是人类还是人工智能。 AI驱动程序未能通过我们的测试,因为乘客检测到了上方的AI驱动程序。相比之下,当人类驾驶员开车时,乘客的判断就围绕着机会。我们进一步研究了人类乘客如何将人类归因于我们的测试。基于Lewin的现场理论,我们提出了一个将信号检测理论与预训练的语言模型相结合的计算模型,以预测乘客的人性评级行为。我们在研究前基线情绪和相应的后阶段情绪之间采用了情感过渡,作为模型的信号强度。结果表明,随着情感过渡的更大,乘客的人性归属将增加。我们的研究表明,情感过渡在乘客的人类归属中的重要作用,这可能成为自主驾驶的未来方向。

Autonomous cars are indispensable when humans go further down the hands-free route. Although existing literature highlights that the acceptance of the autonomous car will increase if it drives in a human-like manner, sparse research offers the naturalistic experience from a passenger's seat perspective to examine the humanness of current autonomous cars. The present study tested whether the AI driver could create a human-like ride experience for passengers based on 69 participants' feedback in a real-road scenario. We designed a ride experience-based version of the non-verbal Turing test for automated driving. Participants rode in autonomous cars (driven by either human or AI drivers) as a passenger and judged whether the driver was human or AI. The AI driver failed to pass our test because passengers detected the AI driver above chance. In contrast, when the human driver drove the car, the passengers' judgement was around chance. We further investigated how human passengers ascribe humanness in our test. Based on Lewin's field theory, we advanced a computational model combining signal detection theory with pre-trained language models to predict passengers' humanness rating behaviour. We employed affective transition between pre-study baseline emotions and corresponding post-stage emotions as the signal strength of our model. Results showed that the passengers' ascription of humanness would increase with the greater affective transition. Our study suggested an important role of affective transition in passengers' ascription of humanness, which might become a future direction for autonomous driving.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源