论文标题
具有季节性继承的非局部分散方程
The nonlocal dispersal equation with seasonal succession
论文作者
论文摘要
在本文中,我们专注于具有季节性继承的非局部分散单位方程,可用于描述在不良季节和好季节之间交替的环境中物种的动态。我们首先证明了全球积极解决方案的存在和独特性,然后讨论解决方案的长时间行为。结果表明,其动力学完全取决于主要特征值的迹象,即,时间周期性问题没有积极的解决方案,而当主要特征值(主要特征值)是非负问题时,对初始价值问题的解决方案往往为零,而时间周期性的正周期性解决方案则独特,并且在全球范围内稳定在全球范围内稳定稳定,那么原理稳定的eigenvalue eigenvalue n is eigenvalue is eigenvalue is eigenvalue。
In this paper, we focus on the nonlocal dispersal monostable equation with seasonal succession, which can be used to describe the dynamics of species in an environment alternating between bad and good seasons. We first prove the existence and uniqueness of global positive solution, and then discuss the long time behaviors of solution. It is shown that its dynamics is completely determined by the sign of the principal eigenvalue, i.e., the time periodic problem has no positive solution and the solution of the initial value problem tends to zero when principal eigenvalue is non-negative, while the time periodic positive solution exists uniquely and is globally asymptotically stable when principal eigenvalue is negative.