论文标题

任何量子资源理论中是否有有限的完整单调集合?

Is there a finite complete set of monotones in any quantum resource theory?

论文作者

Datta, Chandan, Ganardi, Ray, Kondra, Tulja Varun, Streltsov, Alexander

论文摘要

纠缠量化旨在评估量子状态对于量子信息处理任务的价值。一个密切相关的问题是状态可转换性,询问是否可以将共享的量子状态转换为另一种远程量子状态而无需交换量子粒子。在这里,我们探讨了量子纠缠和一般量子资源理论的这种连接。对于任何包含无资源纯净状态的量子资源理论,我们表明,不存在一组有限的资源单调,该单调完全决定了所有状态转换。我们讨论如何考虑不连续或无限的单调或使用量子催化,如何超越这些局限性。我们还讨论了由单个资源单调描述的理论的结构,并显示了与完全有序的资源理论的等效性。这些理论在任何一对量子状态下都存在自由转换。我们表明,完全有序的理论允许在所有纯状态之间进行自由转换。对于单量系统,我们为任何有序的资源理论提供了状态转换的完整表征。

Entanglement quantification aims to assess the value of quantum states for quantum information processing tasks. A closely related problem is state convertibility, asking whether two remote parties can convert a shared quantum state into another one without exchanging quantum particles. Here, we explore this connection for quantum entanglement and for general quantum resource theories. For any quantum resource theory which contains resource-free pure states, we show that there does not exist a finite set of resource monotones which completely determines all state transformations. We discuss how these limitations can be surpassed, if discontinuous or infinite sets of monotones are considered, or by using quantum catalysis. We also discuss the structure of theories which are described by a single resource monotone and show equivalence with totally ordered resource theories. These are theories where a free transformation exists for any pair of quantum states. We show that totally ordered theories allow for free transformations between all pure states. For single-qubit systems, we provide a full characterization of state transformations for any totally ordered resource theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源