论文标题
纳米厚的YIG膜中的传播自旋波光谱在Millikelvin温度下
Propagating spin-wave spectroscopy in nanometer-thick YIG films at millikelvin temperatures
论文作者
论文摘要
在Millikelvin温度下,对薄膜进行传播的自旋波光谱是迈向实现量子应用大规模集成的磁通电路的下一步。在这里,我们在温度下以$ 100 \,\ mathrm {nm} $ - 厚的yttrium-iron-garnet膜的旋转波传播,低至$ 45 \,\ mathrm {mk} $,使用stripline nanoantennAs沉积在yig表面上,以进行电兴奋和检测。测量$ 10 \,μ\ mathrm {m} $的清晰传输特性,减去自旋波群速度和YIG饱和磁化磁化磁化;我们表明,Gadolinium-gallium-garnet底物仅对超过$ 75 \,\ mathrm {mt} $的应用磁场影响自旋波的传播特性,该特征从ggg磁场起源于$ 47 \,\ mathrm {ka/m} $ 45 \ n55 \ n Math,Math \ n Math,Mathrm {ka/m} $。我们的结果表明,开发的制造和测量方法使在Millikelvin温度下实现了综合的宏观量子纳米技术。
Performing propagating spin-wave spectroscopy of thin films at millikelvin temperatures is the next step towards the realisation of large-scale integrated magnonic circuits for quantum applications. Here we demonstrate spin-wave propagation in a $100\,\mathrm{nm}$-thick yttrium-iron-garnet film at the temperatures down to $45 \,\mathrm{mK}$, using stripline nanoantennas deposited on YIG surface for the electrical excitation and detection. The clear transmission characteristics over the distance of $10\,μ\mathrm{m}$ are measured and the subtracted spin-wave group velocity and the YIG saturation magnetisation agree well with the theoretical values. We show that the gadolinium-gallium-garnet substrate influences the spin-wave propagation characteristics only for the applied magnetic fields beyond $75\,\mathrm{mT}$, originating from a GGG magnetisation up to $47 \,\mathrm{kA/m}$ at $45 \,\mathrm{mK}$. Our results show that the developed fabrication and measurement methodologies enable the realisation of integrated magnonic quantum nanotechnologies at millikelvin temperatures.