论文标题

YOLOOD:利用对象检测概念进行多标签的分布检测

YolOOD: Utilizing Object Detection Concepts for Multi-Label Out-of-Distribution Detection

论文作者

Zolfi, Alon, Amit, Guy, Baras, Amit, Koda, Satoru, Morikawa, Ikuya, Elovici, Yuval, Shabtai, Asaf

论文摘要

由于其在部署系统中的重要性,近年来,分布式(OOD)检测引起了机器学习研究社区的大量关注。以前的大多数研究都集中在多类分类任务中检测OOD样品。但是,多标签分类任务中的OOD检测是一种更常见的现实用例,仍然是一个未置换的域。在这项研究中,我们提出了Yolood-一种方法,该方法利用对象检测域中的概念在多标签分类任务中执行OOD检测。对象检测模型具有区分感兴趣的对象(分发)和无关的对象(例如OOD对象​​)的固有能力,这些对象包含属于不同类别类别的多个对象。这些能力使我们能够将常规对象检测模型转换为具有固有的OOD检测功能的图像分类器,并且仅更改。我们比较了最先进的OOD检测方法的方法,并证明了Yolood在全面分布和OOD基准数据集上胜过这些方法的能力。

Out-of-distribution (OOD) detection has attracted a large amount of attention from the machine learning research community in recent years due to its importance in deployed systems. Most of the previous studies focused on the detection of OOD samples in the multi-class classification task. However, OOD detection in the multi-label classification task, a more common real-world use case, remains an underexplored domain. In this research, we propose YolOOD - a method that utilizes concepts from the object detection domain to perform OOD detection in the multi-label classification task. Object detection models have an inherent ability to distinguish between objects of interest (in-distribution) and irrelevant objects (e.g., OOD objects) in images that contain multiple objects belonging to different class categories. These abilities allow us to convert a regular object detection model into an image classifier with inherent OOD detection capabilities with just minor changes. We compare our approach to state-of-the-art OOD detection methods and demonstrate YolOOD's ability to outperform these methods on a comprehensive suite of in-distribution and OOD benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源