论文标题
违约集问题的最低程度限制
Restriction on minimum degree in the contractible sets problem
论文作者
论文摘要
令$ g $为$ 3 $连接的图。如果连接$ g(w)$,并且$ g -w $是$ 2 $连接的图,则$ w \ subset v(g)$是可签约的。在1994年,McCuaig和OTA提出了以下猜想:对于任何$ k \ in \ Mathbb {n} $中的任何$ k \,存在$ m \ in \ mathbb {n} $,以便任何3个连接的Graph $ g $带有$ v(g)\ geqslant m $ k $ k $ - $ k $ -ver-versible set。在本文中,我们证明,对于任何$ k \ geqslant 5 $,如果$δ(g)\ geqslant \ left [\ frac {2k + 1} {2k + 1} {3} {3} {3} \ right] + 2 $,则猜想的主张持有。
Let $G$ be a $3$-connected graph. A set $W \subset V(G)$ is contractible if $G(W)$ is connected and $G - W$ is a $2$-connected graph. In 1994, McCuaig and Ota formulated the conjecture that, for any $k \in \mathbb{N}$, there exists $m \in \mathbb{N}$ such that any 3-connected graph $G$ with $v(G) \geqslant m$ has a $k$-vertex contractible set. In this paper we prove that, for any $k \geqslant 5$, the assertion of the conjecture holds if $δ(G) \geqslant \left[ \frac{2k + 1}{3} \right] + 2$.