论文标题

比较均匀超图的列表彩色功能与它们的色多项式(III)

Comparing list-color functions of uniform hypergraphs with their chromatic polynomials (III)

论文作者

Dong, Fengming, Zhang, Meiqiao

论文摘要

对于HyperGraph $ {\ cal H} $,让$ P({\ cal H},K)$和$ p_l({\ cal H},K),K)$分别为其色度评分和列表 - 颜色功能,让$τ'({\ cal H})$是最少的非inte inte inte inte $ q $ q(cal) H},k)= p_l({\ cal H},k)$保留所有整数$ k \ ge q $。在本文中,我们表明,对于任何$ r $ rust suiltraph $ {\ cal h} $的订单$ n $和size $ m $和任何$ k $ m $和任何$ k $ l $ of $ {\ cal h} $,其中$ r \ ge 3 $,$ p({\ cal h},l),l),\ cal h} {\ cal h},\ cal h},k) k-(m-1)\} k^{n-r-1} \ sum_ {e \ in E({\ cal h})}} \ left(k- \ left | \ bigcap_ {v \ in E} l(v)l(v)因此,$τ'({\ cal H})\ le m-1 $,改善了$τ'({\ cal H})$的当前最佳结果。

For a hypergraph ${\cal H}$, let $P({\cal H},k)$ and $P_l({\cal H},k)$ be its chromatic polynomial and list-color function respectively, and let $τ'({\cal H})$ be the least non-negative integer $q$ such that $P({\cal H},k)=P_l({\cal H},k)$ holds for all integers $k\ge q$. In this article, we show that for any $r$-uniform hypergraph ${\cal H}$ of order $n$ and size $m$ and any $k$-assignment $L$ of ${\cal H}$, where $r\ge 3$, $P({\cal H},L)-P({\cal H},k)\ge \min \{0.02k, k-(m-1)\} k^{n-r-1}\sum_{e\in E({\cal H})} \left ( k-\left |\bigcap_{v\in e}L(v)\right | \right )$ holds for $k\ge m-1\ge 4$. It follows that $τ'({\cal H})\le m-1$, improving the current best result on $τ'({\cal H})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源