论文标题

点车:开放式点云学习的切割和混合

PointCaM: Cut-and-Mix for Open-Set Point Cloud Learning

论文作者

Hong, Jie, Qiu, Shi, Li, Weihao, Anwar, Saeed, Harandi, Mehrtash, Barnes, Nick, Petersson, Lars

论文摘要

点云学习正在受到越来越多的关注,但是,大多数现有的点云模型都缺乏处理未知物体不可避免的存在的实际能力。本文主要讨论开放式设置下的点云学习,我们在其中训练模型没有来自未知类别的数据并在推理阶段识别它们。基本上,我们建议使用由未知点的模拟器和未知点估计器模块组成的新颖点剪切和混合机制来求解开放点云学习。具体而言,我们使用未知点模拟器在训练阶段通过操纵部分已知数据的几何环境来模拟分布数据。基于此,未知点估计器模块学会利用点云的特征上下文来区分已知和未知数据。广泛的实验表明,开放点云学习的合理性以及我们提出的解决方案的有效性。我们的代码可在\ url {https://github.com/shiqiu0419/pointcam}中找到。

Point cloud learning is receiving increasing attention, however, most existing point cloud models lack the practical ability to deal with the unavoidable presence of unknown objects. This paper mainly discusses point cloud learning under open-set settings, where we train the model without data from unknown classes and identify them in the inference stage. Basically, we propose to solve open-set point cloud learning using a novel Point Cut-and-Mix mechanism consisting of Unknown-Point Simulator and Unknown-Point Estimator modules. Specifically, we use the Unknown-Point Simulator to simulate out-of-distribution data in the training stage by manipulating the geometric context of partial known data. Based on this, the Unknown-Point Estimator module learns to exploit the point cloud's feature context for discriminating the known and unknown data. Extensive experiments show the plausibility of open-set point cloud learning and the effectiveness of our proposed solutions. Our code is available at \url{https://github.com/ShiQiu0419/pointcam}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源