论文标题
分子内结构异质性随着内在无序蛋白质中的远距离接触而改变
Intramolecular Structural Heterogeneity altered by Long-range Contacts in an Intrinsically Disordered Protein
论文作者
论文摘要
短距离相互作用和远距离触点驱动结构化蛋白的3D折叠。蛋白质的结构直接影响其生物学功能。然而,将近40%的真核生物蛋白质组由本质上无序的蛋白质(IDP)和蛋白质区域组成,这些蛋白质区域在许多构象的集合之间波动。因此,要了解其生物学功能,至关重要的是描述结构集成统计如何与IDPS的氨基酸序列相关。在这里,我们使用小角度X射线散射(SAX)和时间分辨的Förster共振能量转移(TRFRET),我们研究神经丝低的内在无序无序尾域(NFLT)的分子内结构异质性(NFLT)。使用聚合物物理学的理论结果,我们发现NFLT子细分市场的Flory缩放指数与它们的净电荷线性相关,范围从理想到自我避免链的统计数据。令人惊讶的是,在整个NFLT蛋白的背景下测量相同的片段,我们发现,无论肽序列如何,段的结构统计数据都比独立测量时更扩展。我们的发现表明,尽管聚合物物理学在某种程度上可以将IDP的序列与其集合构象相关,但远处氨基酸之间的远距离接触在确定分子内结构方面起着至关重要的作用。这强调了先进的聚合物理论的必要性,以完全描述IDP合奏,希望我们能够对其生物学功能进行建模。
Short-range interactions and long-range contacts drive the 3D folding of structured proteins. The proteins' structure has a direct impact on their biological function. However, nearly 40% of the eukaryotes proteome is composed of intrinsically disordered proteins (IDPs) and protein regions that fluctuate between ensembles of numerous conformations. Therefore, to understand their biological function, it is critical to depict how the structural ensemble statistics correlate to the IDPs' amino acid sequence. Here, using small-angle x-ray scattering (SAXS) and time-resolved Förster resonance energy transfer (trFRET), we study the intra-molecular structural heterogeneity of the neurofilament low intrinsically disordered tail domain (NFLt). Using theoretical results of polymer physics, we find that the Flory scaling exponent of NFLt sub-segments correlates linearly with their net charge, ranging from statistics of ideal to self-avoiding chains. Surprisingly, measuring the same segments in the context of the whole NFLt protein, we find that regardless of the peptide sequence, the segments' structural statistics are more expanded than when measured independently. Our findings show that while polymer physics can, to some level, relate the IDP's sequence to its ensemble conformations, long-range contacts between distant amino acids play a crucial role in determining intra-molecular structures. This emphasizes the necessity of advanced polymer theories to fully describe IDPs ensembles with the hope it will allow us to model their biological function.