论文标题

通过自我进化进行有效的语言模型预处理和下游适应:超级诉讼的案例研究

Toward Efficient Language Model Pretraining and Downstream Adaptation via Self-Evolution: A Case Study on SuperGLUE

论文作者

Zhong, Qihuang, Ding, Liang, Zhan, Yibing, Qiao, Yu, Wen, Yonggang, Shen, Li, Liu, Juhua, Yu, Baosheng, Du, Bo, Chen, Yixin, Gao, Xinbo, Miao, Chunyan, Tang, Xiaoou, Tao, Dacheng

论文摘要

该技术报告简要介绍了我们在Superglue排行​​榜上的JDExplore D-Team的Vega V2提交。 Superglue比广泛使用的一般语言理解评估(GLUE)基准更具挑战性,其中包含八个困难的语言理解任务,包括问题回答,自然语言推断,单词意义上的歧义歧义,核心方案解决和推理。 [方法]我们的目的不是任意增加验证的语言模型(PLM)的大小,而是对1)完全从输入预读取数据中提取知识,例如,例如6B和2)有效地将此知识转移到下游任务中。为了实现目标1),我们建议PLM的自我进化学习,以明智地预测应掩盖的内容的信息,并用矫正的平滑标签监督蒙面的语言建模(MLM)过程。对于目标2),我们通过将知识从基础模型和相关的下游任务转移到目标任务来利用及时转移技术来改善低资源任务。 [结果]根据我们的提交记录(2022年10月),我们的6B VEGA方法在我们的6B VEGA方法上实现了4/8个任务的新最先进的绩效,坐在2022年10月8日的超级高级排行榜上,平均得分为91.3。

This technical report briefly describes our JDExplore d-team's Vega v2 submission on the SuperGLUE leaderboard. SuperGLUE is more challenging than the widely used general language understanding evaluation (GLUE) benchmark, containing eight difficult language understanding tasks, including question answering, natural language inference, word sense disambiguation, coreference resolution, and reasoning. [Method] Instead of arbitrarily increasing the size of a pretrained language model (PLM), our aim is to 1) fully extract knowledge from the input pretraining data given a certain parameter budget, e.g., 6B, and 2) effectively transfer this knowledge to downstream tasks. To achieve goal 1), we propose self-evolution learning for PLMs to wisely predict the informative tokens that should be masked, and supervise the masked language modeling (MLM) process with rectified smooth labels. For goal 2), we leverage the prompt transfer technique to improve the low-resource tasks by transferring the knowledge from the foundation model and related downstream tasks to the target task. [Results] According to our submission record (Oct. 2022), with our optimized pretraining and fine-tuning strategies, our 6B Vega method achieved new state-of-the-art performance on 4/8 tasks, sitting atop the SuperGLUE leaderboard on Oct. 8, 2022, with an average score of 91.3.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源