论文标题
使用基于任务的优先级进行主动学习
Active learning using adaptable task-based prioritisation
论文作者
论文摘要
基于机器学习的医学图像计算应用程序需要专家标签策展,而未标记的图像数据可能相对丰富。主动学习方法旨在优先考虑可用图像数据的一部分,以进行专家注释,用于标签有效的模型培训。我们开发了一个控制器神经网络,该网络以一系列批次的优先级(如批处理模式为主动学习)来测量图像的优先级,用于多级分割任务。在马尔可夫决策过程(MDP)环境中,通过奖励特定于任务的绩效增益来优化控制器,该绩效也可以优化任务预测器。在这项工作中,任务预测器是一个细分网络。使用多个MDP提出了一种元强化学习算法,以便可以将预训练的控制器适应新的MDP,该新MDP包含来自不同机构的数据和/或需要对腹部内不同器官或结构进行分割。我们使用来自一千多名患者的多个CT数据集提出了实验结果,并具有九个不同的腹部器官的分割任务,以证明学习的优先控制器功能及其跨内部和跨加压适应性的疗效。我们表明,提出的适应性优先计量度量屈服于新型肾脏类别,在训练中看不见,使用大约40 \%至60 \%的标签,与其他启发式或随机的优先级指标相比,使用约40 \%至60 \%。对于大小有限的临床数据集,与随机优先级和替代性主动采样策略相比,针对肾脏和肝血管分割的任务分别为肾脏和肝血管分割的任务提供了22.6 \%和10.2 \%的性能提高。
Supervised machine learning-based medical image computing applications necessitate expert label curation, while unlabelled image data might be relatively abundant. Active learning methods aim to prioritise a subset of available image data for expert annotation, for label-efficient model training. We develop a controller neural network that measures priority of images in a sequence of batches, as in batch-mode active learning, for multi-class segmentation tasks. The controller is optimised by rewarding positive task-specific performance gain, within a Markov decision process (MDP) environment that also optimises the task predictor. In this work, the task predictor is a segmentation network. A meta-reinforcement learning algorithm is proposed with multiple MDPs, such that the pre-trained controller can be adapted to a new MDP that contains data from different institutes and/or requires segmentation of different organs or structures within the abdomen. We present experimental results using multiple CT datasets from more than one thousand patients, with segmentation tasks of nine different abdominal organs, to demonstrate the efficacy of the learnt prioritisation controller function and its cross-institute and cross-organ adaptability. We show that the proposed adaptable prioritisation metric yields converging segmentation accuracy for the novel class of kidney, unseen in training, using between approximately 40\% to 60\% of labels otherwise required with other heuristic or random prioritisation metrics. For clinical datasets of limited size, the proposed adaptable prioritisation offers a performance improvement of 22.6\% and 10.2\% in Dice score, for tasks of kidney and liver vessel segmentation, respectively, compared to random prioritisation and alternative active sampling strategies.