论文标题
在19量宽的2D最近邻居量子阵列上的量子计算
Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array
论文作者
论文摘要
在本文中,我们探讨了以一个维度约束的量子晶格的宽度和物理阈值的宽度之间的关系,以进行可扩展的,容忍故障的量子计算。为了绕过传统的小固定宽度阵列的较低阈值,我们故意在使用表面代码的最低编码水平上设计出错误偏置。然后,我们使用晶格手术表面代码总线以更高的编码来解决这种工程偏置,以利用这种偏见,或者重复代码,以使逻辑Qubits用偏见的表面代码Qubits制作出无偏错误的逻辑量子。然后可以通过与其他代码(例如Steane [[7,1,3]]代码和[[15,7,3]] CSS代码等其他代码进行进一步串联来达到任意较低的错误率。这使得在一个方形量子晶格上仅宽19 Q Qub,给定物理量子位,错误率为$ 8.0 \ times 10^{-4} $,这可以启用可扩展的固定宽度量子计算体系结构。这可能会缓解具有精细量子螺距的系统中的工程问题,例如硅或砷化炮的量子点。
In this paper, we explore the relationship between the width of a qubit lattice constrained in one dimension and physical thresholds for scalable, fault-tolerant quantum computation. To circumvent the traditionally low thresholds of small fixed-width arrays, we deliberately engineer an error bias at the lowest level of encoding using the surface code. We then address this engineered bias at a higher level of encoding using a lattice-surgery surface code bus that exploits this bias, or a repetition code to make logical qubits with unbiased errors out of biased surface code qubits. Arbitrarily low error rates can then be reached by further concatenating with other codes, such as Steane [[7,1,3]] code and the [[15,7,3]] CSS code. This enables a scalable fixed-width quantum computing architecture on a square qubit lattice that is only 19 qubits wide, given physical qubits with an error rate of $8.0\times 10^{-4}$. This potentially eases engineering issues in systems with fine qubit pitches, such as quantum dots in silicon or gallium arsenide.