论文标题

最大耗散算子的功能模型的光谱形式:Lagrange身份方法

The spectral form of the functional model for maximally dissipative operators: A Lagrange identity approach

论文作者

Brown, B. Malcolm, Marletta, Marco, Naboko, Sergey, Wood, Ian

论文摘要

非频谱问题的光谱和散射特性构成了数学挑战。除特殊的情况外,用于检查自助会问题范围的发达方法不适用。攻击非偏爱问题的工具之一是功能模型。许多功能模型的缺点是它们的构造需要可能难以明确描述的对象,例如操作员方形根,因此很难将结果应用于特定的示例。 我们为非频交术语和基于Lagrange身份的边界条件中出现非偏爱的情况开发了一个功能模型。 Lagrange身份中选择$γ$ - 手术器的灵活性意味着可以选择这些功能,以便模型中出现的表达式是根据物理参数(系数,边界条件和Titchmarsh-Weyl $ M $ - 功能)明确给出的。呈现功能模型光谱形式的这种显式表达式可以说是本文的主要贡献。在功能模型的频谱形式中,自助障碍的扩张非常简单,是在某些辅助矢量值值函数空间中通过自变量乘法的运算符。我们还获得了操作员的完全非偏爱部分的明确表达,并获得了sz.-nagy-foias著名结果的算子分析证明,这是对最小自我自我差扩散频谱的纯绝对连续性的著名结果。最后,我们考虑了一个限制圈子Sturm-Liouville操作员的示例。

The spectral and scattering properties of non-selfadjoint problems pose a mathematical challenge. Apart from exceptional cases, the well-developed methods used to examine the spectrum of selfadjoint problems are not applicable. One of the tools to attack non-selfadjoint problems are functional models. A drawback of many functional models is that their constructions require objects which may be difficult to describe explicitly, such as operator square roots, making it hard to apply the results to specific examples. We develop a functional model for the case when the non-selfadjointness arises both in additive terms and in the boundary conditions which is based on the Lagrange identity. The flexibility of the choice of the $Γ$-operators in the Lagrange identity means that these can be chosen so that expressions arising in the model are given explicitly in terms of physical parameters (coefficients, boundary conditions and Titchmarsh-Weyl $M$-function) of the maximally dissipative operator. The presentation of such explicit expressions for the spectral form of the functional model is arguably the main contribution of the present paper. In the spectral form of the functional model, the selfadjoint dilation is very simple, being the operator of multiplication by an independent variable in some auxiliary vector-valued function space. We also obtain an explicit expression for the completely non-selfadjoint part of the operator and an operator-analytic proof of the famous result by Sz.-Nagy-Foias on the pure absolute continuity of the spectrum of the minimal selfadjoint dilation. Finally, we consider an example of a limit circle Sturm-Liouville operator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源