论文标题
在移动的伯恩赛德比塞特函数的基本代数上
On the essential algebra of the shifted Burnside biset functor
论文作者
论文摘要
我们描述了Burnside Biset函数的基本代数,$ \ widehat {kb_t}(g)$,在两种情况下,$ t $ t $ the oft $ t $移动。首先,当$ g $和$ t $都是有限的阿贝尔集团时,$ k $是一个特征$ 0 $的领域。在这种情况下,$ \ wideHat {kb_t}(g)$是对移位星代数的商的同构,该代数是根据$ g \ times g \ times g \ times t $的子组定义的。第二种情况是$ g $和$ t $是满足$(| g |,| t |)= 1 $而$ k $的任何有限组是通勤的统一戒指。在这种情况下,$ \ wideHat {kb_t}(g)$与$ out(g)$和$ kb^{z(g)}(t)$的半领产品同构,是$ t $的$ t $的单个burnside ring,带有$ z(g)$的系数。 本文的目的是考虑$ \ wideHat {kb_t}(g)$的自然发电机集,来自$ kb_t(g \ times g)$中的瞬态元素,并探索某些情况,在此组合中,可以为$ \ wideHat {kb_t}(g)提供基础。
We describe the essential algebra, $\widehat{kB_T}(G)$, of the Burnside biset functor shifted by a group $T$, at a group $G$, in two cases. First, when $G$ and $T$ are both finite abelian groups and $k$ is a field of characteristic $0$. In this case, $\widehat{kB_T}(G)$ is isomorphic to a quotient of the shifted star algebra, which is defined in terms of the subgroups of $G\times G\times T$. The second case is when $G$ and $T$ are any finite groups satisfying $(|G|, |T|)=1$ and $k$ is a commutative unitary ring. In this case, $\widehat{kB_T}(G)$ is isomorphic to a semidirect product of $Out(G)$ and $kB^{Z(G)}(T)$, the monomial Burnside ring of $T$ with coefficients in $Z(G)$. The aim of the article is to consider the natural set of generators of $\widehat{kB_T}(G)$ coming from the transitive elements in $kB_T(G\times G)$ and explore some cases in which it is possible to give a basis for $\widehat{kB_T}(G)$ in this set.