论文标题
针对前可解释的文本分类的特定任务嵌入
Task-Specific Embeddings for Ante-Hoc Explainable Text Classification
论文作者
论文摘要
当前的最新文本分类方法通常利用SoftMax分类器的BERT风格的变压器模型,共同进行了微调,以预测目标任务的类标签。在本文中,我们提出了一个替代培训目标,在该目标中,我们学习了特定于任务的文本嵌入:我们提出的目标学习嵌入嵌入,以便所有共享相同目标类标签的文本都应在嵌入空间中靠近,而其他所有文本都应相距甚远。这使我们可以通过更容易解释的k-neart-neybor分类方法替换软马克斯分类器。在一系列实验中,我们表明这产生了许多有趣的好处:(1)可以使用嵌入空间中距离引起的结果顺序直接解释分类决策。 (2)这有助于对培训数据进行定性检查,帮助我们更好地了解问题空间并确定标签质量问题。 (3)在某种程度上,学习的距离可以推广到看不见的类,从而使我们可以逐步添加新类而无需重新训练模型。我们提出了广泛的实验,这些实验表明,在整体分类准确性上,前事先解释性和渐进性学习的好处无需代表我们所提出的方法的实际适用性。
Current state-of-the-art approaches to text classification typically leverage BERT-style Transformer models with a softmax classifier, jointly fine-tuned to predict class labels of a target task. In this paper, we instead propose an alternative training objective in which we learn task-specific embeddings of text: our proposed objective learns embeddings such that all texts that share the same target class label should be close together in the embedding space, while all others should be far apart. This allows us to replace the softmax classifier with a more interpretable k-nearest-neighbor classification approach. In a series of experiments, we show that this yields a number of interesting benefits: (1) The resulting order induced by distances in the embedding space can be used to directly explain classification decisions. (2) This facilitates qualitative inspection of the training data, helping us to better understand the problem space and identify labelling quality issues. (3) The learned distances to some degree generalize to unseen classes, allowing us to incrementally add new classes without retraining the model. We present extensive experiments which show that the benefits of ante-hoc explainability and incremental learning come at no cost in overall classification accuracy, thus pointing to practical applicability of our proposed approach.