论文标题

$ \ MATHBB Z_2 $较高旋转液体-S $ S $ KITAEV HONEYCOMB模型:确切的脱合$ \ Mathbb z_2 $ gauge结构

$\mathbb Z_2$ spin liquids in the higher spin-$S$ Kitaev honeycomb model: An exact deconfined $\mathbb Z_2$ gauge structure in a non-integrable model

论文作者

Ma, Han

论文摘要

较高的自旋Kitaev模型显着地具有与自旋$ 1/2 $ KITAEV蜂窝模型相同的广泛本地保守量,尽管它并非完全可解决。关于这些保守数量在较高自旋模型中的物理含义仍然是一个空旷的问题。在这封信中,通过引入一般旋转的Majorana Parton构造,我们发现这些保守数量正是一般旋转$ S $型号中的$ \ Mathbb Z_2 $量规通量,其中包括Spin- $ 1/2 $。特别是,我们发现$ \ mathbb z_2 $量规是在半整数旋转模型中的费米子,但是整数旋转模型中的玻色子。我们进一步证明了费米金$ \ mathbb z_2 $量规费用总是被剥夺的;因此,无论哈密顿量中的相互作用强度如何,半整数旋转基塔维模型都将具有非平凡的自旋液态态。另一方面,整数旋转模型的Bosonic $ \ Mathbb Z_2 $量规指控可能会导致琐碎的产品状态,并且在模型的各向异性极限下确实是这种情况。

The higher spin Kitaev model prominently features the extensive locally conserved quantities the same as the spin-$1/2$ Kitaev honeycomb model, although it is not exactly solvable. It remains an open question regarding the physical meaning of these conserved quantities in the higher spin model. In this Letter, by introducing a Majorana parton construction for a general spin-$S$ we uncover that these conserved quantities are exactly the $\mathbb Z_2$ gauge fluxes in the general spin-$S$ model, including the case of spin-$1/2$. Particularly, we find an even-odd effect that the $\mathbb Z_2$ gauge charges are fermions in the half integer spin model, but are bosons in the integer spin model. We further prove that the fermionic $\mathbb Z_2$ gauge charges are always deconfined; hence the half integer spin Kitaev model would have non-trivial spin liquid ground states regardless of interaction strengths in the Hamiltonian. The bosonic $\mathbb Z_2$ gauge charges of the integer spin model, on the other hand, could condense, leading to a trivial product state, and this is indeed the case at the anisotropic limit of the model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源