论文标题
Anyon冷凝和颜色代码
Anyon condensation and the color code
论文作者
论文摘要
对物质的拓扑阶段进行编码和过程量子信息的操纵构成了许多耐故障量子计算方法的基石。在这里,我们证明了这些方法中易耐断层的逻辑操作可以解释为Anyon冷凝的实例。我们为Anyon凝结提供了一个建设性的理论,并同时使用颜色代码模型明确说明了我们的理论。我们表明,不同的冷凝过程与一般的域壁类别相关联,这些域壁可能存在于空间和时间般的方向上。该类包括半透明的域壁,将任何人的某些子集凝结。我们使用理论来对拓扑对象进行分类,并为颜色代码设计新颖的耐故障逻辑门。作为最后一个示例,我们还认为动态的“ floquet代码”可以看作是一系列冷凝操作。我们提出了一种基于颜色代码的冷凝操作动态驱动的平面代码的一般结构,以实现平面驱动的代码。我们使用我们的构造来引入新的Calderbank-s-s-ser steane-type floquet代码,我们称之为floquet color Code。
The manipulation of topologically-ordered phases of matter to encode and process quantum information forms the cornerstone of many approaches to fault-tolerant quantum computing. Here we demonstrate that fault-tolerant logical operations in these approaches can be interpreted as instances of anyon condensation. We present a constructive theory for anyon condensation and, in tandem, illustrate our theory explicitly using the color-code model. We show that different condensation processes are associated with a general class of domain walls, which can exist in both space- and time-like directions. This class includes semi-transparent domain walls that condense certain subsets of anyons. We use our theory to classify topological objects and design novel fault-tolerant logic gates for the color code. As a final example, we also argue that dynamical `Floquet codes' can be viewed as a series of condensation operations. We propose a general construction for realising planar dynamically driven codes based on condensation operations on the color code. We use our construction to introduce a new Calderbank-Shor Steane-type Floquet code that we call the Floquet color code.