论文标题

图形自动编码器的微观和宏级图建模

Micro and Macro Level Graph Modeling for Graph Variational Auto-Encoders

论文作者

Zahirnia, Kiarash, Schulte, Oliver, Naddaf, Parmis, Li, Ke

论文摘要

图形数据的生成模型是机器学习中的重要研究主题。图数据包含两个级别,通常分别分别分析:节点级属性,例如一对节点之间存在链接以及全局聚合图级统计量,例如基序计数。本文提出了一个新的多层次框架,该框架将节点级属性和图形统计量共同建模为相互加强的信息来源。我们为图生成引入了一个新的微麦克罗训练目标,该目标结合了节点级别和图形级损失。我们利用微型麦克罗目标用GraphVae(基于图形级别的潜在变量建立的模型,为中等大小的图形提供快速训练和生成时间)来改善图形生成。我们的实验表明,在GraphVae模型中添加微麦克罗模型可在五个基准数据集上提高图形质量评分高达2个数量级,同时保持GraphVae生成速度优势。

Generative models for graph data are an important research topic in machine learning. Graph data comprise two levels that are typically analyzed separately: node-level properties such as the existence of a link between a pair of nodes, and global aggregate graph-level statistics, such as motif counts. This paper proposes a new multi-level framework that jointly models node-level properties and graph-level statistics, as mutually reinforcing sources of information. We introduce a new micro-macro training objective for graph generation that combines node-level and graph-level losses. We utilize the micro-macro objective to improve graph generation with a GraphVAE, a well-established model based on graph-level latent variables, that provides fast training and generation time for medium-sized graphs. Our experiments show that adding micro-macro modeling to the GraphVAE model improves graph quality scores up to 2 orders of magnitude on five benchmark datasets, while maintaining the GraphVAE generation speed advantage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源