论文标题
通过去除质心的投影来减轻几次学习中的样本选择偏见
Alleviating the Sample Selection Bias in Few-shot Learning by Removing Projection to the Centroid
论文作者
论文摘要
几乎没有足够注释的视觉模型对视力模型的概括(FSL)目标。尽管出现了许多少数学习方法,但样本选择偏差问题,即对有限支持数据的敏感性,尚未得到充分了解。在本文中,我们发现,当支持样本的位置位于任务中心的附近时,通常会发生这个问题 - 任务中所有班级的平均值。这促使我们提出了一种非常简单的功能转换,以减轻这个问题,称为“任务质心预测”(TCPR)。 TCPR直接应用于给定任务中的所有图像功能,旨在删除沿任务中心方向的特征的维度。虽然无法准确地从有限的数据中获得确切的任务中心,但我们使用类似于支持功能的基本功能来估算它。我们的方法有效地阻止了特征离任务质心太近。来自不同域的十个数据集的大量实验表明,TCPR可以可靠地提高各种功能提取器,培训算法和数据集的分类精度。该代码已在https://github.com/kikimormay/fsl-tcbr上提供。
Few-shot learning (FSL) targets at generalization of vision models towards unseen tasks without sufficient annotations. Despite the emergence of a number of few-shot learning methods, the sample selection bias problem, i.e., the sensitivity to the limited amount of support data, has not been well understood. In this paper, we find that this problem usually occurs when the positions of support samples are in the vicinity of task centroid -- the mean of all class centroids in the task. This motivates us to propose an extremely simple feature transformation to alleviate this problem, dubbed Task Centroid Projection Removing (TCPR). TCPR is applied directly to all image features in a given task, aiming at removing the dimension of features along the direction of the task centroid. While the exact task centroid cannot be accurately obtained from limited data, we estimate it using base features that are each similar to one of the support features. Our method effectively prevents features from being too close to the task centroid. Extensive experiments over ten datasets from different domains show that TCPR can reliably improve classification accuracy across various feature extractors, training algorithms and datasets. The code has been made available at https://github.com/KikimorMay/FSL-TCBR.