论文标题
通过嵌入而退化的差分 - 代数方程的索引减少
Index Reduction for Degenerated Differential-Algebraic Equations by Embedding
论文作者
论文摘要
为了找到一个差分 - 代数方程系统的一致的初始数据点,需要识别其缺失的约束。 PantileDes启动了利用依赖关系图的有效类别的结构方法。更完整的方法依赖于差异代数的几何形状,但遭受了其他问题(例如,复杂性高)。在本文中,我们提供了一类新的有效结构方法,并结合了数值真实代数几何形状的新工具,这些工具具有大大提高的完整性属性。如果由于符号取消或数值变性,分化后的雅各布矩阵在分化后仍然是单数的,那么现有的结构方法可能会失败。现有的结构方法只能处理由符号取消引起的退化病例。但是,如果系统具有参数,则其参数jacobian矩阵在将结构方法应用于某些参数值之后仍可能是单数。此情况称为数值变性。 对于差异代数方程的多项式非线性系统,使用数值真实代数几何形状给出了数值方法来求解两种退化情况。首先,我们介绍了一种证人点方法,该方法在每个约束部分中至少产生一个证人点。这可以有助于确保此类系统所有组成部分的恒定等级和检测。其次,我们提出一个恒定的等级嵌入引理,并基于它提出了通过嵌入(IRE)方法降低索引,该方法可以构建具有完整等级jacobian矩阵的等效系统。第三,IRE导致了一种全局结构分化方法,以在数值上求解所有组件上的差异差异方程。电路,力学的施用示例用于演示我们的方法。
To find consistent initial data points for a system of differential-algebraic equations, requires the identification of its missing constraints. An efficient class of structural methods exploiting a dependency graph for this task was initiated by Pantiledes. More complete methods rely on differential-algebraic geometry but suffer from other issues (e.g. high complexity). In this paper we give a new class of efficient structural methods combined with new tools from numerical real algebraic geometry that has much improved completeness properties. Existing structural methods may fail for a system of differential-algebraic equations if its Jacobian matrix after differentiation is still singular due to symbolic cancellation or numerical degeneration. Existing structural methods can only handle degenerated cases caused by symbolic cancellation. However, if a system has parameters, then its parametric Jacobian matrix may be still singular after application of the structural method for certain values of the parameters. This case is called numerical degeneration. For polynomially nonlinear systems of differential-algebraic equations, numerical methods are given to solve both degenerated cases using numerical real algebraic geometry. First, we introduce a witness point method, which produces at least one witness point on every constraint component. This can help to ensure constant rank and detection of degeneration on all components of such systems. Secondly, we present a Constant Rank Embedding Lemma, and based on it propose an Index Reduction by Embedding (IRE) method which can construct an equivalent system with a full rank Jacobian matrix. Thirdly, IRE leads to a global structural differentiation method, to solve degenerated differential-algebraic equations on all components numerically. Application examples from circuits, mechanics, are used to demonstrate our method.