论文标题

宏伟系统的微磁性频域模拟方法

Micromagnetic frequency-domain simulation methods for magnonic systems

论文作者

d'Aquino, Massimiliano, Hertel, Riccardo

论文摘要

我们提出了有效的数值方法,用于模拟三维微磁系统中的小磁化振荡。 Landau-Lifshitz-Gilbert(LLG)方程描述了磁化动力学,在通用平衡构型周围线性地线性化,并以特殊操作员形式进行配制,该形式允许利用大型技术,通常使用用于评估时数micromagnetic模拟中有效场的大规模技术。通过使用此公式,我们得出数值算法来计算自由磁化振荡(即自旋波本征谱)以及由AC射频射频驱动的磁化振荡,以进行任意形状的纳米磁体。此外,提供了基于减少算术的计算的半分析扰动技术,以快速评估磁化频率响应和吸收光谱作为阻尼和交流场的函数。我们既提出有限的差异和有限元的实现,并证明它们在测试案例上的有效性。这些技术开辟了可能在相当短的时间内研究了数十万(甚至数百万)计算细胞的通用宏伟系统的可能性。

We present efficient numerical methods for the simulation of small magnetization oscillations in three-dimensional micromagnetic systems. Magnetization dynamics is described by the Landau-Lifshitz-Gilbert (LLG) equation, linearized in the frequency domain around a generic equilibrium configuration, and formulated in a special operator form that allows leveraging large-scale techniques commonly used to evaluate the effective field in time-domain micromagnetic simulations. By using this formulation, we derive numerical algorithms to compute the free magnetization oscillations (i.e., spin wave eigenmodes) as well as magnetization oscillations driven by ac radio-frequency fields for arbitrarily shaped nanomagnets. Moreover, semi-analytical perturbation techniques based on the computation of a reduced set of eigenmodes are provided for fast evaluation of magnetization frequency response and absorption spectra as a function of damping and ac field. We present both finite difference and finite element implementations and demonstrate their effectiveness on a test case. These techniques open the possibility to study generic magnonic systems discretized with several hundred thousand (or even millions) of computational cells in a reasonably short time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源