论文标题

实时重力推理的分解参数估计

Factorized Parameter Estimation for Real-Time Gravitational Wave Inference

论文作者

Islam, Tousif, Roulet, Javier, Venumadhav, Tejaswi

论文摘要

我们提出了重力波(GW)信号的参数估计框架,该框架汇集了几个想法以加速推理过程。首先,我们使用相对的binning算法评估每个检测器中的信号到噪声比例时间,以便给定的内在参数选择。其次,我们将描述二进制紧凑型物体合并的外在参数(例如距离,方向和天空位置)的内在参数(例如组件的质量和旋转)的估计。我们通过半分析将后验分布在外部参数上边缘化而无需重复评估固定固有参数的波形而实现这一目标。最后,我们增强了从适当的条件分布中得出的外在参数的内在参数样本。我们实现了带有旋转的二进制方法的方法,仅限于信号的四极模式。使用模拟的GW信号,我们证明该方法会产生完整的11维后期,可与标准贝叶斯推断相匹配。我们的框架仅需约200秒即可分析典型的二进制二进制信号和约250秒钟,即可使用一个计算核心分析典型的二进制内部星空信号。对二进制源属性的实时和准确估计将极大地帮助解释引力波搜索中的触发因素,以及搜索可能的电磁对应物。我们通过GW推理软件包公开提供该框架。

We present a parameter estimation framework for gravitational wave (GW) signals that brings together several ideas to accelerate the inference process. First, we use the relative binning algorithm to evaluate the signal-to-noise-ratio timeseries in each detector for a given choice of intrinsic parameters. Second, we decouple the estimation of the intrinsic parameters (such as masses and spins of the components) from that of the extrinsic parameters (such as distance, orientation, and sky location) that describe a binary compact object coalescence. We achieve this by semi-analytically marginalizing the posterior distribution over extrinsic parameters without repeatedly evaluating the waveform for a fixed set of intrinsic parameters. Finally, we augment samples of intrinsic parameters with extrinsic parameters drawn from their appropriate conditional distributions. We implement the method for binaries with aligned spins, restricted to the quadrupole mode of the signal. Using simulated GW signals, we demonstrate that the method produces full eleven-dimensional posteriors that match those from standard Bayesian inference. Our framework takes only ~200 seconds to analyze a typical binary-black-hole signal and ~250 seconds to analyze a typical binary-neutron-star signal using one computing core. Such real-time and accurate estimation of the binary source properties will greatly aid the interpretation of triggers from gravitational wave searches, as well as the search for possible electromagnetic counterparts. We make the framework publicly available via the GW inference package cogwheel.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源