论文标题

应用物理信息增强的超分辨率生成对抗网络中的湍流预燃烧和类似发动机的火焰内核直接数值模拟数据

Applying Physics-Informed Enhanced Super-Resolution Generative Adversarial Networks to Turbulent Premixed Combustion and Engine-like Flame Kernel Direct Numerical Simulation Data

论文作者

Bode, Mathis, Gauding, Michael, Goeb, Dominik, Falkenstein, Tobias, Pitsch, Heinz

论文摘要

解决不足的流中有限速率化学的模型仍然构成了复杂构型预测模拟的主要挑战之一。如果涉及湍流,问题将变得更加具有挑战性。这项工作推进了最近开发的Piesrgan建模方法,用于湍流预燃烧。为此,调整了网络处理并在损失函数中考虑的物理信息,对训练过程进行了平滑,尤其是对密度变化的影响。最终的模型为先验和后验测试提供了良好的结果,并在完全湍流的预热火焰内核的直接数值模拟数据上提供了良好的结果。讨论了建模方法的限制。最后,该模型被用来计算预混合火焰内核的进一步实现,并通过对其周期到周期变化的比例敏感框架进行了分析。这项工作表明,数据驱动的Piesrgan子滤光器模型可以非常准确地在许多更粗的网格上重现直接的数值仿真数据,这对于经典的子滤波器模型几乎不可能,并且由于计算成本较小,因此可以更有效地研究统计过程。

Models for finite-rate-chemistry in underresolved flows still pose one of the main challenges for predictive simulations of complex configurations. The problem gets even more challenging if turbulence is involved. This work advances the recently developed PIESRGAN modeling approach to turbulent premixed combustion. For that, the physical information processed by the network and considered in the loss function are adjusted, the training process is smoothed, and especially effects from density changes are considered. The resulting model provides good results for a priori and a posteriori tests on direct numerical simulation data of a fully turbulent premixed flame kernel. The limits of the modeling approach are discussed. Finally, the model is employed to compute further realizations of the premixed flame kernel, which are analyzed with a scale-sensitive framework regarding their cycle-to-cycle variations. The work shows that the data-driven PIESRGAN subfilter model can very accurately reproduce direct numerical simulation data on much coarser meshes, which is hardly possible with classical subfilter models, and enables studying statistical processes more efficiently due to the smaller computing cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源