论文标题
网络上的本地狄拉克同步
Local Dirac Synchronization on Networks
论文作者
论文摘要
我们提出了本地Dirac同步,该同步使用Dirac Operator来捕获耦合节点的动力学和在任意网络上的链接信号。在局部狄拉克同步中,动力学的谐波模式自由振荡,而其他模式则非线性相互作用,当模型的耦合常数增加时,导致集体同步状态。局部狄拉克同步的特征是不连续的过渡和节奏相干阶段的出现。在这个有节奏的阶段,两个复杂阶参数之一之一以缓慢的频率(称为出现频率)在固有频率的平均值为零的框架中振荡。我们在退火近似中获得的理论结果通过完全连接的网络以及稀疏的泊松和无标度网络的广泛数值结果来验证。在随机网络和真实网络上的局部狄拉克同步,例如秀丽隐杆线虫的连接组,揭示了拓扑(Betti数字和谐波模式)和非线性动力学之间的相互作用。这揭示了拓扑如何在大脑节奏的发作中发挥作用。
We propose Local Dirac Synchronization which uses the Dirac operator to capture the dynamics of coupled nodes and link signals on an arbitrary network. In Local Dirac Synchronization, the harmonic modes of the dynamics oscillate freely while the other modes are interacting non-linearly, leading to a collectively synchronized state when the coupling constant of the model is increased. Local Dirac Synchronization is characterized by discontinuous transitions and the emergence of a rhythmic coherent phase. In this rhythmic phase, one of the two complex order parameters oscillates in the complex plane at a slow frequency (called emergent frequency) in the frame in which the intrinsic frequencies have zero average. Our theoretical results obtained within the annealed approximation are validated by extensive numerical results on fully connected networks and sparse Poisson and scale-free networks. Local Dirac Synchronization on both random and real networks, such as the connectome of Caenorhabditis Elegans, reveals the interplay between topology (Betti numbers and harmonic modes) and non-linear dynamics. This unveils how topology might play a role in the onset of brain rhythms.