论文标题

2D完整可压缩的Navier-Stokes方程的新爆炸标准,而无需在有限域中进行热传导

A new blow-up criterion for the 2D full compressible Navier-Stokes equations without heat conduction in a bounded domain

论文作者

Fan, Jie, Jiu, Quansen

论文摘要

本文将根据密度$ρ$和压力$ p $而无需热传导的2D完整可压缩Navier-Stokes方程来得出新的爆炸标准。更准确地说,它表明在一个有限的域中,如果规范$ \ |ρ|| _ {{l^\ infty(0,t; l^{\ infty})}}}+|| p || p || _ {l^{l^{l^{p_0}(p_0}(0,t; p; p; p; p; $ 1 <P_0 \ LEQ 2 $。边界条件被施加为Navier-Slip边界一个,并允许初始真空。我们的结果扩展了先前的结果,该结果称为$ \ |ρ|| _ {{l^\ infty(0,t; l^{\ infty}}}}}+|| p || p || _ {l^{\ infty}(0,t; t; t; l^\ infty)} <\ \ iffty $。

This paper is to derive a new blow-up criterion for the 2D full compressible Navier-Stokes equations without heat conduction in terms of the density $ρ$ and the pressure $P$. More precisely, it indicates that in a bounded domain the strong solution exists globally if the norm $\|ρ||_{{L^\infty(0,t;L^{\infty})}}+||P||_{L^{p_0}(0,t;L^\infty)}<\infty$ for some constant $p_0$ satisfying $1<p_0\leq 2$. The boundary condition is imposed as a Navier-slip boundary one and the initial vacuum is permitted. Our result extends previous one which is stated as $\|ρ||_{{L^\infty(0,t;L^{\infty})}}+||P||_{L^{\infty}(0,t;L^\infty)}<\infty$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源