论文标题

BI Avan:脑启发的对抗视觉注意网络

BI AVAN: Brain inspired Adversarial Visual Attention Network

论文作者

Huang, Heng, Zhao, Lin, Hu, Xintao, Dai, Haixing, Zhang, Lu, Zhu, Dajiang, Liu, Tianming

论文摘要

视觉关注是人脑中的一种基本机制,它激发了深层神经网络中注意机制的设计。但是,大多数视觉注意力研究都采用了眼神跟踪数据,而不是直接测量大脑活动来表征人类的视觉注意力。此外,人类视觉系统中与注意力相关的对象与注意到的背景之间的对抗关系并未得到充分利用。为了弥合这些差距,我们提出了一种新型的受脑启发的对抗视觉注意网络(Bi-van),以直接从功能性脑活动中表征人类的视觉注意力。我们的双风模型模仿了与注意相关/被忽视的对象之间的有偏见的竞争过程,以识别和将视觉对象定位在人类大脑以无监督的方式关注的电影框架中。我们使用独立的眼睛跟踪数据作为验证的基础真理,实验结果表明,在推断有意义的人类视觉注意力并映射大脑活动与视觉刺激之间的关系时,我们的模型可实现强大而有希望的结果。我们的双风格模型有助于利用大脑功能架构的新兴领域,以激发和指导人工智能(AI)中的模型设计,例如深度神经网络。

Visual attention is a fundamental mechanism in the human brain, and it inspires the design of attention mechanisms in deep neural networks. However, most of the visual attention studies adopted eye-tracking data rather than the direct measurement of brain activity to characterize human visual attention. In addition, the adversarial relationship between the attention-related objects and attention-neglected background in the human visual system was not fully exploited. To bridge these gaps, we propose a novel brain-inspired adversarial visual attention network (BI-AVAN) to characterize human visual attention directly from functional brain activity. Our BI-AVAN model imitates the biased competition process between attention-related/neglected objects to identify and locate the visual objects in a movie frame the human brain focuses on in an unsupervised manner. We use independent eye-tracking data as ground truth for validation and experimental results show that our model achieves robust and promising results when inferring meaningful human visual attention and mapping the relationship between brain activities and visual stimuli. Our BI-AVAN model contributes to the emerging field of leveraging the brain's functional architecture to inspire and guide the model design in artificial intelligence (AI), e.g., deep neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源