论文标题
基于对抗性的主动抽样基于可制造的芯片设计的数据增强框架
An Adversarial Active Sampling-based Data Augmentation Framework for Manufacturable Chip Design
论文作者
论文摘要
光刻建模是芯片设计中的一个关键问题,以确保芯片设计面膜是可以制造的。它需要对计算上昂贵的光学和化学模型进行严格的模拟。机器学习的最新发展提供了替代解决方案,以替换耗时的光刻模拟使用深度神经网络。但是,相当大的准确性下降仍然阻碍了其工业采用。最重要的是,培训数据集的质量和数量直接影响模型性能。为了解决这个问题,我们提出了一个意识到的数据增强(LADA)框架,以解决有限数据的困境并改善机器学习模型的性能。首先,我们为光刻建模和梯度友好的StyleGAN 2发电机预算了神经网络。然后,我们执行对抗性主动采样,以生成信息丰富和合成的分布掩模设计。这些合成掩码图像将增加用于验证光刻模型的原始有限培训数据集,以提高性能。实验结果表明,LADA可以通过缩小培训和测试数据实例之间的性能差距来成功利用神经网络容量。
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable. It requires rigorous simulations of optical and chemical models that are computationally expensive. Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks. However, the considerable accuracy drop still impedes its industrial adoption. Most importantly, the quality and quantity of the training dataset directly affect the model performance. To tackle this problem, we propose a litho-aware data augmentation (LADA) framework to resolve the dilemma of limited data and improve the machine learning model performance. First, we pretrain the neural networks for lithography modeling and a gradient-friendly StyleGAN2 generator. We then perform adversarial active sampling to generate informative and synthetic in-distribution mask designs. These synthetic mask images will augment the original limited training dataset used to finetune the lithography model for improved performance. Experimental results demonstrate that LADA can successfully exploits the neural network capacity by narrowing down the performance gap between the training and testing data instances.