论文标题

部分可观测时空混沌系统的无模型预测

Global-to-local Expression-aware Embeddings for Facial Action Unit Detection

论文作者

An, Rudong, Zhang, Wei, Zeng, Hao, Chen, Wei, Deng, Zhigang, Ding, Yu

论文摘要

表达式和面部动作单元(AUS)是两个面部行为描述符的两个级别。表达辅助信息已被广泛用于改善AU检测性能。但是,大多数现有的表达表示形式只能描述预定的离散类别(例如愤怒,厌恶,快乐,悲伤等),并且无法像澳大利亚一样捕获微妙的表达转换。在本文中,我们提出了一种新颖的细粒\ textsl {全局表达表示编码},以捕获微妙而连续的面部运动,以促进AU检测。为了获得这样的全局表达表示形式,我们建议根据全局表达相似性训练大规模表达数据集上的表达嵌入模型。此外,考虑到AU的本地定义,提取本地AU特征至关重要。因此,我们设计一个\ textsl {local au特征模块},以生成每个AU的本地面部特征。具体而言,它由AU特征映射提取器和相应的AU面膜提取器组成。首先,两个提取器分别将全局表达式表示分别转换为AU特征图和掩模。然后,将AU特征映射及其相应的AU蒙版乘以生成针对本地面部区域的AU蒙版特征。最后,将AU蒙版的功能馈送到AU分类器中,以判断AU的发生。广泛的实验结果证明了我们提出的方法的优越性。我们的方法有效地胜过以前的工作,并在广泛使用的面部数据集上实现了最先进的性能,包括BP4D,DISFA和BP4D+。

Expressions and facial action units (AUs) are two levels of facial behavior descriptors. Expression auxiliary information has been widely used to improve the AU detection performance. However, most existing expression representations can only describe pre-determined discrete categories (e.g., Angry, Disgust, Happy, Sad, etc.) and cannot capture subtle expression transformations like AUs. In this paper, we propose a novel fine-grained \textsl{Global Expression representation Encoder} to capture subtle and continuous facial movements, to promote AU detection. To obtain such a global expression representation, we propose to train an expression embedding model on a large-scale expression dataset according to global expression similarity. Moreover, considering the local definition of AUs, it is essential to extract local AU features. Therefore, we design a \textsl{Local AU Features Module} to generate local facial features for each AU. Specifically, it consists of an AU feature map extractor and a corresponding AU mask extractor. First, the two extractors transform the global expression representation into AU feature maps and masks, respectively. Then, AU feature maps and their corresponding AU masks are multiplied to generate AU masked features focusing on local facial region. Finally, the AU masked features are fed into an AU classifier for judging the AU occurrence. Extensive experiment results demonstrate the superiority of our proposed method. Our method validly outperforms previous works and achieves state-of-the-art performances on widely-used face datasets, including BP4D, DISFA, and BP4D+.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源